期刊文献+

一种优化的移动机器人ALV视觉归航算法 被引量:1

An Optimized Visual Homing Algorithm Based on Average Landmark Vector for Mobile Robot
原文传递
导出
摘要 针对移动机器人平均路标向量(ALV)的算法性能受自然路标影响较大的问题,提出了一种优化算法.在利用图像特征检测与匹配手段,如SIFT(尺度不变特征变换)、SURF(加速鲁棒特征)等,来获得自然路标的前提下,优化算法首先对原始的ALV算法进行了过程拆解,获得归航子向量;然后利用统计学理论对归航子向量的贡献度进行调整,并剔除误匹配路标;最后将带有权值信息的归航子向量重新整合,获得指向目标位置的归航向量.实验表明,优化的ALV算法有效地提高了自然路标的整体精度,保证了路标的对应性,从而提高了ALV算法的准确性,使机器人可以以更理想的轨迹自主地到达目标位置. Aiming at the problem that the performance of ALV(average landmark vector) algorithm for mobile robots is greatly affected by natural landmarks, an optimized algorithm is proposed. By utilizing the image feature detection and matching algorithms(such as scale-invariant feature transform and speeded-up robust feature) to obtain natural landmarks,the optimized algorithm firstly disassembles the original ALV algorithm and obtains the home sub-vectors. Then, the contributions of the home sub-vectors are adjusted and the mismatching landmarks are eliminated by using the statistical theory.Finally, the home sub-vectors that contain weight information are integrated into the home vector pointing to the target location. Experiments show that the optimized ALV algorithm can effectively improve the overall accuracy of the natural landmarks and ensure the correspondence of the landmarks, so as to improve the accuracy of the ALV algorithm and make the robot reach the target location autonomously with a more ideal trajectory.
出处 《机器人》 EI CSCD 北大核心 2018年第5期704-711,761,共9页 Robot
基金 国家自然科学基金(61673129 51674109)
关键词 视觉归航 机器人导航 平均路标向量算法 折反射全景图像 visual homing robot navigation average landmark vector algorithm catadioptric panoramic image
  • 相关文献

参考文献2

二级参考文献38

  • 1Cartwright B A, Collett T S. Landmark Learning in Bees. Journal of Comparative Physiology A : Neuroethology, Sensory, Neural, and Behavioral Physiology, 1983, 151 (4) : 521 -543.
  • 2Davison A J. Real-Time Simultaneous Localization and Mapping with a Single Camera//Proc of the 9th IEEE International Conference on Computer Vision. Nice, France, 2003, Ⅱ : 1403 - 1410.
  • 3Eade E, Drummond T. Scalable Monocular Slam // Proc of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. New York, USA, 2006, I : 469 - 476.
  • 4Vardy A. Long-Range Visual Homing//Proc of the IEEE International Conference on Robotics and Biomimetics. Kunming, China, 2006 : 220 - 226.
  • 5Goedeme T, Nuttin M, Tuytelaars T. Omnidirectional Vision Based Topological Navigation. International Journal of Computer Vision, 2007, 74(3) : 219 -236.
  • 6Cassinis R, Duina D, Inelli S, et al. Unsupervised Matching of Visual Landmarks for Robotic Homing Using Fourier-Mellin Transform. Robotics and Autonomous Systems, 2002, 40(2/3) : 131 -138.
  • 7Pons J S, Hubner W, Dahmen J. Vision-Based Robot Homing in Dynamic Environments // Proc of the 13th IASTED International Conference on Robotics and Applications. Wuerzburg, Germany, 2007 : 293 - 298.
  • 8Argyros A, Bekris K, Orphanoudakis S. Robot Homing Based on Comer Tracking in a Sequence of Panoramic Images// Proe of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Hawaii, USA, 2001 : 3 - 10.
  • 9Vardy A, Maller R. Biologically Plausible Methods for Robot Visual Homing. Connection Science , 2005, 17(1 ): 47-89.
  • 10Zeil J, Hofmann M, Chahl J. Catchments Areas of Panoramic Snapshots in Outdoor Scenes. The Optical Society of America, 2003, 20 (3) : 450 - 469.

共引文献1

同被引文献11

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部