期刊文献+

高速水下机器人通气空化减阻技术的水洞实验研究 被引量:2

Water Tunnel Experiment Research of Ventilated Cavitation Drag Reduction Technology for a High Speed UUV
原文传递
导出
摘要 针对高速水下机器人的减阻需求,基于通气空化减阻技术提出一种"空化器+边条+椭球形流线体"构型的水下机器人.采用水洞实验的方法分析了该构型的通气空化特性和水动力特性.实验结果表明,边条能够将空化器形成的空泡分割为上下2部分,2部分空泡在模型尺度范围内几乎独立发展,互不干涉;在空化器上下孔不同时通气可形成半空泡,保证模型具有一定湿表面积;通气空化能够大幅降低模型阻力,随着弗劳德数的增大,减阻率进一步提高,在实验弗劳德数范围内的最大减阻率将近50%;在单侧通气或上下通气空泡未在模型尾部闭合时,模型受到正的垂向力,能够支撑模型自身重力. A high speed unmanned underwater vehicle(UUV), configurated by a cavitator, strakes and an ellipsoid streamline body, is put forward based on ventilated cavitation technology for the demand of drag reduction. The ventilated cavitation and hydrodynamic characteristics of the configuration are analyzed by water tunnel experiments. The experimental results show that the strakes can divide the cavitator-formed cavity into the upper and the lower parts. The two parts of cavity develop almost in an independent way, almost without any interference, among the range of experimental model size. Half cavity can be formed when the upper and the lower holes are ventilated asynchronously, which keeps a wet surface area of the model. Ventilated cavitation can greatly reduce the model resistance. Drag reduction rate increases with the value of Froude number. The maximum drag reduction rate can be about 50% within the range of the experimental Froude number.When it is unilaterally ventilated, or the upper and lower cavities aren’t merged at the tail of the model, the model is acted by a positive vertical force which can support the gravity of the model itself.
出处 《机器人》 EI CSCD 北大核心 2018年第6期779-785,共7页 Robot
基金 中国科学院青年创新促进会资助项目
关键词 水下机器人 通气空化 减阻 水洞实验 水动力 UUV(unmanned underwater vehicle) ventilated cavitation drag reduction water tunnel experiment hydro dynamic
  • 相关文献

参考文献2

二级参考文献15

  • 1陈兢.新概念武器——超空泡水下高速武器[J].飞航导弹,2004(10):34-37. 被引量:24
  • 2王宝莎,宋保维.多学科设计优化方法及其在水下航行器设计中的应用[J].机械设计与制造,2006(3):26-28. 被引量:4
  • 3贾力平,王聪,于开平,魏英杰,王海斌,张嘉钟.空化器参数对通气超空泡形态影响的实验研究[J].工程力学,2007,24(3):159-164. 被引量:19
  • 4程成,须文波,冷文浩.基于iSIGHT平台DOE方法的螺旋桨敞水性能优化设计[J].计算机工程与设计,2007,28(6):1455-1459. 被引量:23
  • 5Ashley S.Warp Drive Underwater[J].Scientific American Special Online Issue,2002(2):28-36.
  • 6Kuklinski R,Fredette A,Henoch C,et al.Experimental Studies in the Control of Cavitating Bodies[C] //Guidance,Navigation,and Control Conference and Exhibit,Keystone,Colorado,USA:AIAA,2006.
  • 7Alyanak E,Grandhi R,Penmetsa R.Optimum Design of a Supercavitating Torpedo Considering Overall Size,Shape,and Structural Connfiguration[J].International Journal of Solids and Structures,2006,43:642-657.
  • 8Choi J H,Penmetsa R C,Grandhi R V.Shape Optimization of the Cavitator for a Supercavitating Torpedo[J].Struct Multidisc Optim,2005,29:159-167.
  • 9Serebryakov V.Problems of Hydrodynamics for High Speed Motion in Water with Supercavitation[C] //Sixth International Symposium on Cavitation,Wageningen,The Netherlands,2006.
  • 10Garabedian P R.The Principle of Independence of the Cavity Section Expansion(Logvinovich's Principle)as the Basis for Investigation on Cavitation Flows[C] //RTO/NATO Lecture Series 005 Supercavitating Flows,France,2002.

共引文献8

同被引文献15

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部