期刊文献+

基于扰动观测器的机器宇航员协调操作阻抗控制 被引量:1

Coordinated Impedance Control of Robonaut Based on Disturbance Observer
原文传递
导出
摘要 针对未知干扰环境下机器宇航员执行协调操作任务的高精度控制要求,提出一种基于扰动观测器的协调操作阻抗控制算法.首先分析操作物与机器宇航员的几何约束和力约束关系,建立机器宇航员与操作物的统一动力学模型;其次利用机器人广义动量,设计适用于机器宇航员协调操作系统的动量扰动观测器;然后结合统一动力学模型,设计基于扰动观测器的机器宇航员协调操作阻抗控制算法;最后通过仿真对控制方法开展验证.结果表明,当臂杆受未知干涉力影响时,操作物的位置误差可被控制在10-5 m的量级内.所提出的算法有效减小了未知干涉力对操作物位姿控制精度的影响,保证了协调操作任务的高精度控制. To meet the high-accuracy control requirements of the coordinated operation task performed by the Robonaut under unknown interferences, a coordinated impedance control method based on disturbance observer is proposed. Firstly,geometric constraints and force constraints between the object and the Robonaut are analyzed to establish a unified dynamics model of the object and the Robonaut. Secondly, a momentum disturbance observer is designed for the coordinated control system of the Robonaut based on the generalized momentum of the robot. Thirdly, an impedance control method is designed for coordinated operation of the Robonaut based on the disturbance observer, combining with the unified dynamic model.Finally, a numerical simulation is carried out to verify the proposed method. Results show that the position error of the object is controlled within the order of 10-5 m, when the arms are influenced by unknown interferences. The proposed method effectively reduces the influence of the unknown interferences on the accuracy of the object pose control, and ensures the high precision control of the coordinated operation task.
出处 《机器人》 EI CSCD 北大核心 2018年第6期860-869,共10页 Robot
基金 国家自然科学基金(61573066 61327806) 国家973计划(2013CB733000)
关键词 扰动观测器 阻抗控制 机器宇航员 动力学建模 disturbance observer impedance control Robonaut dynamic modeling
  • 相关文献

参考文献5

二级参考文献56

  • 1续龙飞,李俊,甘亚辉,戴先中,孙维.作业约束下的冗余度机器人自运动避障规划方法[J].中南大学学报(自然科学版),2013,44(S2):98-103. 被引量:2
  • 2吴洪涛,王春钢,蔡鹤皋.冗余度机器人的运动学和动力学优化[J].哈尔滨工业大学学报,1994,26(1):113-117. 被引量:3
  • 3孙立宁,赵建文,杜志江.单冗余度机器人避障能力指标的建立及在7自由度冗余手臂上的实践[J].机械工程学报,2007,43(5):223-229. 被引量:11
  • 4Fijany A, Bejczy A K. A new algorithmic framework for robot dynamics analysis with application to space robots dynamics simulation [A]. Proceedings of the 1997 International Conference on Advanced Robotics[C]. 1997. 799 -805.
  • 5Parra-Vega V, Arimoto S, Liu Y H, et al. Dynamic sliding PID control for tracking of robot manipulators: theory and experiments[A].IEEE Transactions on Robotics and Automation, 2003, 19(6): 967-976.
  • 6ERDEN M S, TOMIYAMA T. Human-intent detection and physically interactive control of a robot without force sensors[J]. IEEE Transactions on Robotics, 2010, 26(2) : 370 - 382.
  • 7BICCHI A, BAVARO M, BOCCADAMO G, et al. Physical human-robot interaction dependability, safe- ty, and performance [C] // 10th IEEE International Workshop on Advanced Motion Control. Trento: IEEE, 2008: 9-14.
  • 8KULIC D, CROFT E. Pre-collision safety strategies for human-robot interaetion[J]. Autonomous Robots, 2007, 22:149 - 164.
  • 9SUGAHARA Y, NOHA K, KOSUGE K, et al. Ex- peri-mental study on manipulator design for low collision impact force[C]// IEEE/ASME International Conference on Advanced Intelligent Mechatronics. Singapore: IEEE, 2009:899 - 904.
  • 10SCHRAFT R D, MEYER C, PARLITZ C, et al. Pow- erMate: a safe and intuitive robot assistant for handling and assem-bly tasks[C] // Proceedings of the 2005 IEEE Internatio-nal Conference on Robotics and Automation. Barcelona, Spain: IEEE, 2005: 4074-4079.

共引文献59

同被引文献9

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部