期刊文献+

基于生物认知的移动机器人路径规划方法 被引量:9

Path Planning of Mobile Robots Based on Biological Cognition
原文传递
导出
摘要 针对移动机器人在非结构环境下的导航任务,受哺乳动物空间认知方式的启发,提出一种基于生物认知进行移动机器人路径规划的方法.结合认知地图特性,模拟海马体的情景记忆形成机理,构建封装了场景感知、状态神经元及位姿感知相关信息的情景认知地图,实现了机器人对环境的认知.基于情景认知地图,以最小事件距离为准则,提出事件序列规划算法用于实时导航过程.实验结果表明,该控制算法能使机器人根据不同任务选择最佳规划路径. Inspired by spatial cognition of mammals, a path planning method of mobile robots based on biological cognition is proposed for navigation tasks of mobile robots in the unstructured environment. Combined with characteristics of the cognitive map, an episodic cognitive map encapsulating the information of scene perception, state neurons and pose perception is built through simulating the formation mechanism of the episodic memory in the hippocampus, and the environment cognition is realized by the robot. Based on the episodic cognitive map, an event sequence planning algorithm for real-time navigation is put forward according to the minimum distance between events. Experimental results show that the mobile robot can choose the best planning path for different tasks with the proposed control algorithm.
出处 《机器人》 EI CSCD 北大核心 2018年第6期894-902,共9页 Robot
基金 国家自然科学基金(61503057)
关键词 移动机器人 状态神经元 路径规划 情景记忆 mobile robot state neuron path planning episodic memory
  • 相关文献

参考文献1

二级参考文献16

  • 1林龙年,Remus Osan,Shy Shoham,金文军,左文琪,钱卓,梅兵,陈桂芬.小鼠海马神经网络对情景体验进行实时编码的功能单元的发现与鉴别[J].华东师范大学学报(自然科学版),2005(Z1):208-216. 被引量:2
  • 2王学宁,贺汉根,徐昕.求解部分可观测马氏决策过程的强化学习算法[J].控制与决策,2004,19(11):1263-1266. 被引量:5
  • 3Shani G, Brafman R I, Shimony S E. Forward search value iter- ation for POMDPs[C]//International Joint Conference on Arti- ficial Intelligence. USA: International Joint Conferences on Ar- tificial Intelligence, 2007: 261962624.
  • 4Roy N, Gordon G, Thrun S. Finding approximate POMDP so- lutions through belief compression[J]. Journal of Artificial In- telligence Research, 2005, 23: 1-40.
  • 5Kurniawati H, Hsu D, Lee W S. SARSOP: Efficient point-based POMDP planning by approximating optimally reachable be- lief spaces[C]//Robotics: Science and Systems. Zurich, Switzer- land, 2008.
  • 6Wei J Q, Dolan J M, Snider J M, et al. A point-based MDP for robust single-lane autonomous driving behavior under un- certainties[C]//IEEE International Conference on Robotics andAutomation. Piscataway, USA: IEEE, 2011: 2586-2592.
  • 7Theocharous G, Mahadevan S. Approximate planning with hi- erarchical partially observable Markov decision process mod- els for robot navigation[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA: IEEE, 2002: 1347-1352.
  • 8Ong S C W, Png S W, Hsu D, et al. Planning under uncertainty for robotic tasks with mixed observability[J]. International Jour- nal of Robotics Research, 2010, 29(5): 1053-1068.
  • 9Jockel S, Westhoff D, Zhang J W. EPIROME - A novel frame- work to investigate high-level episodic robot memory[C]//IEEE International Conference on Robotics and Biomimetics. Piscat- away, USA: IEEE, 2007: 1075-1080.
  • 10Endo Y. Anticipatory robot control for a partially observable environment using episodic memories[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA: IEEE, 2008: 2852-2859.

共引文献3

同被引文献89

引证文献9

二级引证文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部