摘要
本文从前景理论的微观视角出发,基于国内首家P2P(个人对个人)纯信用无担保网络借贷平台——PPDai.com进行借贷行为的数据挖掘,结果表明,影响放贷行为的首要因素是借款人的历史违约率,但超额补偿会导致资金涌向高违约风险的借款;此外,借款人的'硬信息'(hard information,是指能用准确的硬指标表示的信息,是正式的、精准的、符合逻辑的、可追溯的,如业绩报告、任务指标、财务报表等)能直接地造成贷款人的非理性投资行为,借款人的社交网络信息能间接地造成贷款人的非理性投资行为。
This paper investigates the priority factors of lender’s decisions in peer-to—peer lending from the view of prospect theory.We apply data mining methods to identifying the priority of various factors.We find that borrower’s historical default ratio is paramount among all influential variables,and the priority factors of a lender’s bidding decision are borrower’s personal behavior,hard information,and borrower’s social network.Maximum entropy algorithm verifies these results and proves the robustness of our model.
作者
盛浙湘
尹优平
盛辉
Sheng Zhexiang;Yin Youping;Sheng Hui
出处
《公司金融研究》
2015年第2期1-23,共23页
Journal of Corporate Finance