期刊文献+

遥感影像混合像元分解算法对比分析 被引量:5

Comparison and analysis on algorithm of mixed pixel's immixing for remote sensing image
下载PDF
导出
摘要 当混合像元分解将遥感中的分类问题深入到亚像元级别时就有巨大的研究前景。围绕混合像元分解问题,介绍了不同的端元提取方法,并利用地面真实遥感数据,采用PPI与SMACC 2种算法进行端元提取,完成丰度反演,获取每种端元的比例。对精度进行对比和分析的结果表明,在端元提取上PPI算法更为精确。 Mixed pixels immixing expand classification problem to a sub-pixel-level,it has a broad prospect in theory.It focus on the immixing of mixed pixels,describes several algorithms of end member extraction.Use the remote sensing image to do experiment,it getting the proportion of each end member.Finally,compare and analysis the different accuracy,then come to the conclusion that the PPI algorithm is more accurate.
出处 《现代测绘》 2016年第1期11-13,20,共4页 Modern Surveying and Mapping
关键词 混合像元 端元提取 线性光谱混合模型 mixed Pixel end member extraction linear spectral mixture model
  • 相关文献

参考文献4

  • 1John Gruninger,Anthony J Ratkowski,Michael L. Hoke.The Sequential Maximum Angle Convex Cone (SMACC) Endmember Model. Proceedings of SPIE the International Society for Optical Engineering . 2004
  • 2Boardman JW,Kruse FA,Green RO.Mapping target signatures via partial unmixing of AVIRIS data: in Summaries. The Fifth Annual JPL Airborne Earth Science Workshop . 1995
  • 3Nascimento, J.M.P.,Dias, J.M.B.Vertex component analysis: a fast algorithm to unmix hyperspectral data. Geoscience and Remote Sensing, IEEE Transactions on . 2005
  • 4李二森,朱述龙,周晓明,余文杰.高光谱图像端元提取算法研究进展与比较[J].遥感学报,2011,15(4):659-679. 被引量:31

二级参考文献29

  • 1Berman M, Kiiveri H, Lagerstrom R, Ernst A, Dunne R and Hunt-ington J F. 2003. ICE: an automated statistical approach to identifying endmembers in hyperspectral images. IEEE Inter- national Geoscience and Remote Sensing Symposium, France: Toulouse, l: 279-283.
  • 2Berman M, Kiiveri H, Lagerstrom R, Ernst A, Dunne R and Hunt-ington J F. 2004. ICE: a statistical approach to identifying endmembers in hyperspectral images. IEEE Transactions on Geoscience and Remote Sensing, 42(10): 2085-2095.
  • 3Berman M, Phatak A, Lagerstrom R and Wood B R. 2009. ICE: anew method for the multivariate curve resolution of hyper- spectral images. Journal of Chemometrics, 23(2): 101-116.
  • 4Boardman J W. 1998. Post-ATREM polishing of AVIRIS apparentreflectance data using EFFORT: a lesson in accuracy versus pre- cision. Summaries of the Seventh JPL Airborne Earth Science Workshop. Pasadena: JPL Publication.
  • 5Boardman J W, Kruse F A and Green R O. 1995. Mapping targetsignatures via partial unmixing of AVIRIS data: in Summaries. Fifth JPL Airborne Earth Science Workshop. Pasadena: JPL Publication: 23-26.
  • 6Bowles J H, Palmadesso P J, Antoniades J A, Baumbeck M M andRickard L J. 1995. Use of filter vectors in hyperspectral data analysis. Infrared Spaceborne Remote Sensing III, SPIE Pro- ceedin~s. San Die~o, USA, 2553:148-157.
  • 7Chang C I. 2003. Hyperspectral Imaging: Techniques for SpectralDetection and Classification. New York: Kluwer Academic/Ple- num Publishers: 40-41.
  • 8Chang C I, Du Q, Chiang S S, Heinz D C and Ginsberg I W. 2001.Unsupervised target subpixel detection in hyperspectral im- agery. Conference Algorithms for Multispectral, Hyperspectral, and Ultraspectral Imagery VII, SPIE Proceedings. Orlando FL, USA, 4381:370-379.
  • 9Chang C I, Wu C C, Liu W M and Ouyang Y C. 2006. A new grow-ing method for simplex-based endmember extraction algorithm. 1EEE Transactions on Geoscience and Remote Sensing, 44(10): 2804-2819.
  • 10Clark R N, Swayze G A, Wise R, Livo K E, Hoefen T M, Kokaly R Fand Sutley S J. 2007. splib06b. USGS Digital Spectral Library. [2009-11-3]. http://speclab.cr.usgs.gov/spectrallib.html.

共引文献31

同被引文献56

引证文献5

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部