期刊文献+

基于PCA和Delaunay剖分点云配准算法研究 被引量:5

Study on Coarse Registration of Point Cloud Based on PCA and Delaunay Triangulations
下载PDF
导出
摘要 针对三维点云精配准算法无法处理初始位置相差较大的点云并易陷入局部最优的问题,提出一种基于特征值计算和匹配的粗配准算法。由于点云表征对象表面形状的一致性,通过主成分分析(PCA)法可以得到每个点的特征值,通过构建基于特征值的Delaunay三角网可以加速寻找特征值最接近的点,利用随机抽样一致性(RANSAC)算法可以获取优化的变换参数。实验表明,该粗配准算法可以有效处理点云初始位置较差的情况,将两点云调整到较好的位置,保证了大部分区域的重叠。 The refined registration algorithm can get into local optimum easily when two 3D point cloud has large position difference.Aiming at this problem,a novel coarse registration algorithm based on computing and matching eigenvalue is proposed.The eigenvalue in the same position of two arbitrary point clouds is represented consistently.The eigenvalue in every point can be achieved by principal component analysis algorithm.Then,Delaunay triangulations of model point cloud are constructed in the process of searching closest point in order to accelerate the iteration.In the last step,RANSAC algorithm is utilized to realize the optimal transformation.The experiment shows the improved registration algorithm can adj ust one of the two original point cloud that is located in its own coordinate system and far away from the other effectively so that they can be aligned.The following registration algorithm can be j ustly applied to refining the previous result.
出处 《现代测绘》 2016年第1期29-32,共4页 Modern Surveying and Mapping
基金 测绘地理信息公益性行业科研专项经费项目资助(201412016)
关键词 点云 主成分分析 特征值 DELAUNAY三角网 RANSAC算法 配准 point cloud principal component analysis eigenvalue Delaunay triangulations RANSAC algorithm registration
  • 相关文献

参考文献10

  • 1Jun Jiang,Jun Cheng,Xinglin Chen.Registration for 3-D point cloud using angular-invariant feature[J]. Neurocomputing . 2009 (16)
  • 2Darion Grant,James Bethel,Melba Crawford.??Point-to-plane registration of terrestrial laser scans(J)ISPRS Journal of Photogrammetry and Remote Sensing . 2012
  • 3Yang Dam Eo,Mu Wook Pyeon,Sun Woong Kim,Jang Ryul Kim,Dong Yeob Han.??Coregistration of terrestrial lidar points by adaptive scale-invariant feature transformation with constrained geometry(J)Automation in Construction . 2012
  • 4Besl P J,McKay N D.A method for registration of 3-D shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence . 1992
  • 5严剑锋,邓喀中.基于特征点提取和匹配的点云配准算法[J].测绘通报,2013(9):62-65. 被引量:27
  • 6Anand Rangarajan,Haili Chui,James S. Duncan.??Rigid point feature registration using mutual information(J)Medical Image Analysis . 1999 (4)
  • 7潘国荣,秦世伟,蔡润彬,谷川.三维激光扫描拟合平面自动提取算法[J].同济大学学报(自然科学版),2009,37(9):1250-1255. 被引量:20
  • 8N. Senin,B.M. Colosimo,M. Pacella.??Point set augmentation through fitting for enhanced ICP registration of point clouds in multisensor coordinate metrology(J)Robotics and Computer Integrated Manufacturing . 2013 (1)
  • 9Zhai R F,Liu S M,Lin C D.Automated Reconstruction of Complex Object by Integrating Point Clouds and Digital Images. INFORMATION-AN INTERNATIONAL INTERDISCIPLINARY JOURNAL . 2012
  • 10戴静兰,陈志杨,叶修梓.ICP算法在点云配准中的应用[J].中国图象图形学报,2007,12(3):517-521. 被引量:195

二级参考文献31

  • 1罗先波,钟约先,李仁举.三维扫描系统中的数据配准技术[J].清华大学学报(自然科学版),2004,44(8):1104-1106. 被引量:99
  • 2张学昌,习俊通,严隽琪.基于点云数据的复杂型面数字化检测技术研究[J].计算机集成制造系统,2005,11(5):727-731. 被引量:27
  • 3Besl P J, Jain R C. Invariant surface characteristics for 3D object recognition in range images[J]. Computer Vision, Graphics Image Process, 1986, 33(1) : 33.
  • 4Besl P J,Jain R C. Segmentation through variable-order surface fitting[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1988,10(2):167.
  • 5Fitzgibbon A W, Eggert D,Fisher R B. High-Level CAD model acquisition from range image[J]. Computer-Aided Design, 1997,29 (4):321.
  • 6Bose S K, Biswas K K, Gupta S K. An integrated approach for range image segmentation and representation [J]. Journal of Artificial Intelligence in Engineering, 1996, 10(3):243.
  • 7Yokoya N, Martin D L. Range image segmentation based on differential geometry:a hybrid approach[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1989, 11 (6): 643.
  • 8TruccoE, Fisher R B. Experiments in curvature-based segmentation of range data[J]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 1995, 17 (2) : 177.
  • 9Fischler M A, Bolles R C. Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography[J].Graphics and Image Processing, 1981,24(6) :381.
  • 10Jiang X, Bunkea H, Meier U. High-level feature based range image segmentation[J].Image and Vision Computing, 2000,18 (10) : 817.

共引文献237

同被引文献36

引证文献5

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部