期刊文献+

基于加权整体最小二乘的单像空间后方交会解算

The Solution of the Single Image Space Resection Based on Weighted Global Least Squares
下载PDF
导出
摘要 在常规单像空间后方交会的解算过程中,整体最小二乘(TLS)算法在减小地面控制点及观测变量存在的误差方面有较广泛的应用。但在解算不等精度测量时,直接采用TLS算法进行参数估计易出现解失真的情况,因此为提高解算精度,可以为不同观测值定权,进行外方位元素的计算。本文以解算全微分共线方程为研究主线,并引进协因数阵为观测值定权,尝试采用加权整体最小二乘算法(WTLS)对单像空间后方交会进行解算。实验结果表明,本文算法较最小二乘算法与整体最小二乘算法在精度和准确度方面均有较大提高,在单像空间后方交会解算中具有较好的应用前景。 The total least squares(TLS)algorithm has a wide application in reducing the error of ground control points and observation variables.However,for the unequal precision measurement,it is easy to get the distorted solutions with the TLS algorithm.Therefore,in order to improve the calculation precision,the weights of different observations can be determined and then the outer-position elements can be calculated.This paper takes the solution of the full differential collinear equation as the main research line,introduces the covariate matrix to determine the weights for the observation values,and tries to use the weighted total least squares algorithm(WTLS)to solve the single image space resection.The results of the experiments show that in comparison of the least squares algorithm and the total least squares algorithm,the WTLS algorithm presented in this paper has significant improvement in precision and accuracy,which has a good application prospect in the solution of the single image space resection.
作者 朱笑笑 曹泽强 ZHU Xiao-xiao;CAO Ze-qiang(School of Geographic Surveying and Urban Planning,Jiangsu Normal University,Xuzhou Jiangsu 221000,China)
出处 《现代测绘》 2019年第1期18-20,共3页 Modern Surveying and Mapping
基金 江苏省自然科学基金青年项目(BK20150236) 江苏师范大学自然科学研究基金(15XLR019)
关键词 单像空间后方交会 参数估计 加权整体最小二乘算法 single image space resection parameter estimation weighted whole least squares algorithm
  • 相关文献

参考文献7

二级参考文献50

  • 1康永伟,钟若飞,吴俣.车载激光扫描仪外参数标定方法研究[J].红外与激光工程,2008,37(S3):249-253. 被引量:34
  • 2戴伯新.共线性的诊断与评价[J].数学的实践与认识,1989,19(4):53-61. 被引量:11
  • 3欧文·克雷斯齐格 蒋正新(译).泛函分析导论及应用[M].北京:北京航空学院出版社,1987.48-50.
  • 4Felus Y A, Sehaffrin B. Performing Similarity Transformations Using the Error-In-Variables Model[C]. ASPRS 2005 Annual Conference Bahirnore, Maryland, 2005.
  • 5Golub H G. Van Loan F C. An Analysis of the Total Least Squares Problem[J]. SIAM Journal on Numerical Analysis, 1980, 17(6): 883-893.
  • 6Van Huffel S, Vandewalle J. The Total Least Squares Problem: Computational Aspects and Analysis[M]. Philadephia; Society for Industrial and Applied Mathematics, 1991.
  • 7Schaffrin B. A Note on Constrained Total Least Squares Estirnation[J]. Linear Algebra and Its Ap plications, 2006,417:245-258.
  • 8李德仁,郑肇葆.解析摄影测奄学[M].北京:测绘出版社,1992:74-75.
  • 9Van Huf-fel S. , Vandewalle J. The Total Least Squares Problem:Computational Aspects and Analysis(Fontiers in AppliedMathematics) [M], SIAM, Philadelphia, 19 91 : 51 - 52:84- 86.
  • 10Yaron A F and Burkhard S. Performing similarity transformations using the Error-In-Variables Model[C]. ASPRS 2005 Annual Conference Bahinore, Maryland, March 7- 11, 2005.

共引文献101

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部