期刊文献+

核张量子空间分解EEG特征提取方法研究 被引量:1

Kernel Tensor Subspace Decomposition-Based EEG Feature Extraction Method
下载PDF
导出
摘要 针对共空间模式(Common Spatial Patterns,CSP)对源信号和记录的脑电信号之间严格的线性模式的假设关系,充分发挥张量在多维上同时处理的优势,研究了一种核张量子空间分解EEG特征提取方法。首先生成EEG数据的张量,利用带二次等式约束的最小二乘问题解决张量分解问题,并将张量扩展到子空间,减小计算的压力,最后推广到核空间,将数据投影到高维特征空间来增强辨别能力。实验数据采用2005年BCI竞赛Ⅲ的数据集Ⅲ_3a,实验结果表明,KTSD方法能够从多类运动想象任务的EEG数据中提取相应的特征,并得到较好分类结果和运行效率。 Aiming at the hypothesis of strict linear model between source signals and recorded EEG signals in the Common Spatial Patterns(CSP),an EEG feature extraction method based on Kernel Tensor Subspace Decomposition(KTSD)is proposed,which can give full play to the advantage of tensors in multidimensional and simultaneous processing.Firstly,the tensor of EEG data is generated,and the tensor decomposition problem is solved by using the least squares problem with quadratic equality constraints,subsequently the tensor is extended to the subspace to reduce the computational pressure.Finally,it is extended to the kernel space to enhance the discrimination ability by projecting data onto highdimensional feature space.BCI competitionⅢ-3a data set is used in the experiment.The experimental results show that KTSD method can extract the corresponding features from EEG data of various motion imagery tasks,and obtain better classification results and operational efficiency.
作者 高煜妤 王柏娜 GAO Yuyu;WANG Baina(Liren College,Yanshan University,Qinhuangdao,Hebei 066004,China)
出处 《计算机工程与应用》 CSCD 北大核心 2019年第7期132-137,144,共7页 Computer Engineering and Applications
基金 国家自然科学基金面上项目(No.61473339) 秦皇岛市科学技术与研究发展计划(No.2012021A057)
关键词 EEG数据 核张量 子空间 核空间 EEG date kernel tensor subspace kernel space
  • 相关文献

参考文献7

二级参考文献64

  • 1王守觉,曲延锋,李卫军,覃鸿.基于仿生模式识别与传统模式识别的人脸识别效果比较研究[J].电子学报,2004,32(7):1057-1061. 被引量:46
  • 2刘晓旻,谭华春,章毓晋.人脸表情识别研究的新进展[J].中国图象图形学报,2006,11(10):1359-1368. 被引量:62
  • 3S C Park,M K Park,M G Kang. Super-resolution image reconstruction: A technical overview [ J ]. IEEE. Signal Processing Magazine,2003,20(3) :21 - 36.
  • 4R C Hardie, K J Barnard, J G Bognar, et al. High-resolution image reconstruction from a sequence of rotated and translated frames and its application to an infrared imaging system[ J ]. Optical Engineering, 1998,37 (1) :247 - 260.
  • 5S P Kim, W Y Su. Recursive high-resolution reconstruction of blurred multiframe images [ J ].IEEE. Transactions on Image Processing, 1993,2(4) : 534 - 539.
  • 6R R Schultz,R L Stevenson. A bayesion approach to image expansion for improved definition[ J]. IEEE Transactions on Image Process, 1994,3(5) :233 - 242.
  • 7B C Tom,A K Katsaggelos. Reconstruction of a high-resolution image by simultaneous registration, restoration, and interpolation of low-resolution images[ A]. Proceedings of IEEE International Conference on Image Processing [ C ]. Washington, DC, USA: IEEE Computer Society, 1995.539 - 542.
  • 8H Stark,P Oskoui. High resolution image recovery from image plane arrays,using convex projectious[J]. Journal of the Optical Society of America, 1989,6( 11 ) : 1715 - 1726.
  • 9P C Hansen,D Prost O' Leary. The use of the L-curve in the regularization of discrete ill-posed problems[ J]. SIAM Journal of Scientific Computing, 1993,14(6) : 1487 - 1503.
  • 10M G Kang. Generalized multichannel image deconvolution approach and its applications[ J]. Optical. Engineering, 1998, 37 (11) :2953 - 2964.

共引文献35

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部