期刊文献+

基于伊藤算法的改进人工蜂群算法 被引量:2

Artificial Bee Colony Algorithm Based on Ito Algorithm
下载PDF
导出
摘要 针对人工蜂群算法(ABC)在求解复杂问题时出现的收敛速度慢、易陷入局部最优的缺点,在布朗运动和伊藤随机过程的启示下,借鉴伊藤算法的设计思想,提出了一种基于布朗运动的改进人工蜂群优化算法(BMABC)。在采蜜蜂和观察蜂阶段分别设计了不同的漂移算子和波动算子。漂移算子保证算法向着最优解的位置漂移,波动算子保证了解的多样性。分别使用ABC、GABC和BMABC对5个经典函数进行了测试。实验结果表明,BMABC算法具有收敛速度快、收敛精度高的特点,并具有良好的稳定性。 When resolving complex problems,the artificial bee colony(ABC)has some disadvantages of slow convergence rate and easy to fall into local optimization,with the inspiration of the Brownian motion and Ito process,and imitating the designed idea of Ito algorithm,this paper proposed a improved artificial bee colony based on Ito algorithm(BMABC).We designed different drift operator and fluctuation operator in the phases of the employed bees and the onlookers respectively.The drift operator ensures the drift direction to the optimal solution.The fluctuation operator ensures the diversity of the solutions.ABC,GABC and BMABC were tested by five classic functions.Experimental results show that BMABC retains the fast convergence and high convergence precision characteristics,as well as better stability.
出处 《计算机科学》 CSCD 北大核心 2014年第S1期29-32,共4页 Computer Science
基金 国家自然科学基金项目(61070009)资助
关键词 人工蜂群算法 布朗运动 伊藤随机过程 伊藤算法 Artificial bee colony algorithm,Brownian motion,Ito process,Ito algorithm
  • 相关文献

参考文献6

  • 1李牧东,熊伟,郭龙.基于人工蜂群算法的DV-Hop定位改进[J].计算机科学,2013,40(1):33-36. 被引量:20
  • 2罗钧,肖向海,付丽,王强.基于分段搜索策略的改进蜂群算法[J].控制与决策,2012,27(9):1402-1405. 被引量:15
  • 3Guopu Zhu,Sam Kwong.Gbest-guided artificial bee colony algorithm for numerical function optimization[J].Applied Mathematics and Computation.2010(7)
  • 4Quan-Ke Pan,M. Fatih Tasgetiren,P.N. Suganthan,T.J. Chua.A discrete artificial bee colony algorithm for the lot-streaming flow shop scheduling problem[J].Information Sciences.2010(12)
  • 5Dervis Karaboga,Bahriye Basturk.A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm[J].Journal of Global Optimization.2007(3)
  • 6D. Karaboga,B. Basturk.On the performance of artificial bee colony (ABC) algorithm[J].Applied Soft Computing Journal.2007(1)

二级参考文献20

  • 1尚志军,曾鹏,于海斌.无线传感器网络节点定位问题[J].计算机科学,2004,31(10):35-38. 被引量:29
  • 2Karaboga D, Basturk B. On the performance of artificial bee colony(ABC) algorithm[J]. Applied Soft Computing, 2008, 8(1): 687-697.
  • 3Karaboga D, Akay B. A comparative study of artificial bee colony algorithm[J]. Applied Mathematics and Computation, 2009, 214(1): 108-132.
  • 4Karaboga D. An idea based on honey bee swarm for numerical optimization[R]. Kayseri: Erciyes University, 2005.
  • 5Quan H Y, Shi X L. On the analysis of performance of the improved artificial-bee-colony algorithm[C]. The 4th Int Conf on Natural Computation. Ji'nan, 2008; 654-658.
  • 6Alatas B. Chaotic bee colony algorithms for global numerical optimization[J]. Expert Systems with Applications, 2010, 37(8): 5682-5687.
  • 7Karaboga D, Basturk B. Artificial bee colony(ABC) optimization algorithm for solving constrained optimization problems[C]. Foundations of Fuzzy Logic and Soft Computing. Cancun, 2007: 789-798.
  • 8Karaboga D, Akay B, Ozturk C. Artificial bee colony(ABC) optimization algorithm for training feed- forward neural networks[J]. Modeling Decisions for Artificial Intelligence, 2007, 4617:318-329.
  • 9Bao L, Zeng J C. Comparison and analysis of the selection mechanism in the artificial bee colony algorithm[C]. 2009 9th Int conf on Hybrid Intelligent Systems(HIS 2009). Shenyang, 2009: 411-416.
  • 10Nicolescu D,Nath B. Positioning in ad hoc networks[J].Journal of Telecommunication Systems,2003.667-280.

共引文献35

同被引文献12

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部