期刊文献+

基于方向约束的改进SIFT匹配算法 被引量:7

Improved SIFT Matching Algorithm Based on Orientation Constraint
下载PDF
导出
摘要 SIFT算法对图像的旋转、尺度变换、亮度变化等情况具有较好的不变性,广泛应用于图像匹配中,但SIFT特征向量生成过程复杂,导致算法实时性不理想,同时匹配结果还存在一定的误匹配点,影响了算法的精确性。为此,对SIFT算法进行改进,提出采用栅格形式选取种子点简化特征向量的生成过程,并利用关键点的方向约束性进一步剔除具有方向差异的误匹配点,从而简化计算量,提高匹配率。实验结果表明,改进后的算法能在保持原有SIFT算法稳定性的基础上提高近一倍的特征向量描述速度,初匹配结果经方向约束后能够有效地剔除具有方向差异的误匹配点,提高匹配率,大大增强了算法的精确性。 SIFT algorithm has good invariance in rotation,scaling the image,brightness change,etc.,and is widely used in image matching.But the generation process of SIFT feature vector is complicated,and results in that the real-time of the algorithms is not ideal.In the same time,there are still some matching mistakes in the matching result,affecting the accuracy of the algorithm.Therefore,we improved the SIFT algorithm,and proposed to use the grid in the selection of seed points to simplify the feature vector generation process,and used the orientation constraint of the key points to reject matching points with directional differences,thus simplifying computation and improving the matching rate.Experimental results show that the improved algorithm can maintain the basic stability of the original SIFT algorithm and improves the speed of feature vectors described nearly doubled.Through orientation constraint of the key points,the false match point with direction differences is rejected,and the matching rate is improved,greatly enhancing the accuracy of the algorithm.
出处 《计算机科学》 CSCD 北大核心 2014年第S1期125-128,163,共5页 Computer Science
基金 自然科学基金项目:飞行器前视红外视觉导航基准图制备的理论与方法研究(61203189)资助
关键词 SIFT 特征向量 图像匹配 方向约束 匹配率 SIFT,Feature vector,Image matching,Orientation constraint,Matching rate
  • 相关文献

参考文献9

二级参考文献81

  • 1夏庆观,盛党红,路红,陈桂.零件图像特征提取和识别的研究[J].中国机械工程,2005,16(22):2031-2033. 被引量:17
  • 2王兆仲,周付根,刘志芳,杨建峰.一种高精度的图像匹配算法[J].红外与激光工程,2006,35(6):751-755. 被引量:9
  • 3庄志国,孙惠军,董继扬,陈忠.基于角点检测的图像匹配算法及其在图像拼接中的应用[J].厦门大学学报(自然科学版),2007,46(4):501-505. 被引量:19
  • 4David G Lowe. Distinctive Image Features from Scale - Invariant Interest Points.International Journal of Computer Vision, 2004, 60 (2), 91-110.
  • 5Michael Grabner, Helmut Grabner, and Horst Bischof. Fast approximated SIFT. Asian Conference on Computer Vision,Hyderabad ,India, 2006, 918-927.
  • 6Paul Viola , Michael Jones. Rapid object detection using a boosted cascade of simple features. Computer Vision and Pattern Recognition.2001, Volume Ⅰ, 511 ┝518.
  • 7Fatih Porikli. Integral histogram: A fast way to extract histograms in cartesian spaces. Computer Vision and Pattern Recognition,2005, Volume 1,829-836.
  • 8Martin A.Fishchler, Robert C.Bolles. Random Sample Consensus: a paradigm for model fitting with application to image analysis and automated cartography.Communication Association Machine, 1981,24(6), 381-395
  • 9LOWED G. Distinctive image features from scale invariant keypoints [ J ]. International Journal of Computer Vision, 2004,60(2) :91-110.
  • 10LOWE D G. Local feature view clustering for 3D object recognition[ C]//IEEE Conference on Computer Vision and Pattern Recognition,2001:652-658.

共引文献176

同被引文献51

  • 1侯舒维,郭宝龙.一种图像自动拼接的快速算法[J].计算机工程,2005,31(15):70-72. 被引量:42
  • 2布拉德斯基,克勒.学习OpenCV[M].北京:清华大学出版社,2009.
  • 3张倩,占君,陈珊,等.详解MATLAB图像函数及其应用[M].北京:电子工业出版社,2011.4.
  • 4李艳丽,向辉.稳健的球面全景图全自动生成算法[J].计算机辅助设计与图形学学报,2007,19(11):1393-1398. 被引量:15
  • 5张朝伟,周焰,吴思励,林洪涛.基于SIFT特征匹配的监控图像自动拼接[J].计算机应用,2008,28(1):191-194. 被引量:39
  • 6Lowe D G. Distinctive image feature from scale- invariant keypoints [ J ]. International Journal of Computer Vision ,2004, 9(6) :35-51.
  • 7Lowe DG. Object recognition from local scale . invariantfeatures [ C ]//Proceeding of the seventh InternationalConference on Computer Vision ( ICCV,99 ). Amster-dam; [s. n. ] ,1999:1 150 -1 157.
  • 8LoweDG Distinctive Image Features from Scale-invariantKeypoints [ J]. International Journal of Computer Vision,2004,60(2) :91 -110.
  • 9I.OWE D G. Distinctive image featurees from scale-invariant key point[J]. Int-ernalional journal of computer vision,2004,60(2) :91- 110.
  • 10FISCHLER MA, BOLI.ES RC. Random sample consensus: a para- dig for model fi-tting with application to image analysis and auto- mated cartography[J]. Communic-ations of t he ACM, 1981, 24 (6) : 381-395.

引证文献7

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部