期刊文献+

利用特征场进化的图像分割方法 被引量:2

Feature Field-based Evolution Method for Image Segmentation
下载PDF
导出
摘要 针对图像分割中最优阈值的选择问题,在数据场机制的基础上提出了一种高维图像分割方法。将局部灰度特征与Tamura纹理度量相结合,如粗糙度、对比度、方向度等,尽可能提取足够的图像信息;将每个包含多特征的像素视作具有一定质量的质点,在图像特征空间上建立特征场;假设最优阈值为潜在的进化方向,通过因动态数据场中相互作用所导致的质点之间自适应吸引和排斥实现特征场的协同进化,并利用少数服从多数的投票法则确定最终分割结果。实验结果表明,所提出的方法在不明显增加时间耗费的情况下,取得了较好的分割效果,具有合理性和有效性。 In order to correctly select the optimal threshold for image segmentation,a novel method of high-dimensional thresholding based on data field mechanism was proposed.Combing the local grayscale and Tamura's texture model,including coarseness,contrast and directionality,enough image information is extracted as far as possible.Taking each pixel with multi-features as a data particle with certain mass,a feature field is generated in the image feature space.Assuming the optimal threshold is latent optimal evolution direction,and feature field-based coevolution is achieved by adaptive attraction and repulsion among particles because of the interactions in dynamic data field,and the final result is determined by majority rule.The experimental results suggest that the new method obtains better performance without obviously increasing the time cost,and it is efficient and effective.
作者 吴涛
出处 《计算机科学》 CSCD 北大核心 2014年第S1期167-173,共7页 Computer Science
基金 广东省自然科学基金(S2013040014926) 广东高校优秀青年创新人才培养计划项目(2012LYM_0092) 湛江师范学院科学研究项目博士专项(ZL1301) 国家973重点基础研究发展计划项目(2012CB719903)资助
关键词 图像分割 数据场 多维阈值 进化算法 纹理 Image segmentation,Data field,Multi-dimensional thresholding,Evolution algorithm,Texture
  • 相关文献

参考文献18

二级参考文献138

共引文献201

同被引文献23

  • 1陈露,秦昆,杨海全,李辉,孔祥兵.基于数据场的图像分割方法初探[J].地理空间信息,2007,5(6):79-81. 被引量:4
  • 2D J White. Stylus contact method for surface metrology in the ascendancy[J]. Measurement and Control, 1998, 31(2): 48-50.
  • 3Kandpal H C, Mehta D S, Vaishya J S. Simple method for measurement of surface roughness using spectral interferometry[J]. Optics and Lasers in Engineering, 2000, 34(3): 139-148.
  • 4Sodhi M S, Tiliouine K. Surface roughness monitoring using computer vision[J]. International Journal of Machine Tools and Manufacture, 1996, 36(7): 817-828.
  • 5Shahabi H H, Ratnam M M. Noncontact roughness measurement of turned parts using machine vision[J]. The International Journal of Advanced Manufacturing Technology, 2010, 46(1-4): 275-284.
  • 6Tchvialeva L, Markhvida I, Zeng H, et al.. Surface roughness measurement by speckle contrast under the illumination of light with arbitrary spectral profile[J]. Optics and Lasers in Engineering, 2010, 48(7): 774-778.
  • 7Meireles J B, Da Silva L, Caetano D P, et al.. Effect of metallic surface roughness on the speckle pattern formation at diffraction plane[J]. Optics and Lasers in Engineering, 2012, 50(12): 1731-1734.
  • 8Kayahan E, Oktem H, Haeizade F, et al.. Measurement of surface roughness of metals using binary speckle image analysis[J]. Tribology International, 2010, 43(1): 307-311.
  • 9Hamed A M, Saudy M. Computation of surface roughness using optical correlation[J]. Pramana, 2007, 68(5): 831-842.
  • 10Dhanasekar B, Mohan N K, Bhaduri B, et al.. Evaluation of surface roughness based on monochromatic speckle correlation using image processing[J]. Precision Engineering, 2008, 32(3): 196-206.

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部