期刊文献+

基于改进蚁群算法的无线传感器网络路由算法的研究 被引量:4

Research of Wireless Sensor Network Routing Algorithm Based on Improved Ant Colony Algorithm
下载PDF
导出
摘要 通过对蚁群算法、无线传感器网络及其路由算法的研究学习,根据单个传感器节点智力有限且需通过多个节点协同来完成复杂任务的特点,将其与具有群体智能特点的蚁群算法联系起来,进而提出了基于蚁群算法的无线传感器网络路由算法。在基本的蚁群算法的基础上增加蚂蚁的属性,并将能量、时延和带宽考虑进来,对蚁群算法进行优化,从而提出了基于改进蚁群算法的无线传感器网络路由算法。然后,对算法进行性能分析,发现改进后的算法在时延和网络寿命方面都有较大的提高。 In this paper,through the study of the the ant colony algorithm,wireless sensor network and its routing algorithm,and according to the characteristics that a single sensor node's intelligence is limited,and multiple nodes are needed to accomplish complex tasks synergistically,we put forward the wireless sensor network routing algorithm based on ant colony algorithm with the ant colony algorithm of swarm intelligence characteristics.On the basis of the basic ant colony algorithm,the properties of the ant and the energy were inceased,and time delay and bandwidth were taken into account to optimize the ant colony algorithm.Wireless sensor network routing algorithm based on improved ant colony algorithm was prposed.Then,through the algorithm performance analysis,and found that the improved algorithm in time delay and network life has better improvement.
出处 《计算机科学》 CSCD 北大核心 2015年第S1期107-111,共5页 Computer Science
基金 2012年河北省自然基金项目(F2012203088)资助
关键词 无线传感器网络 路由算法 路由 蚁群算法 Wireless sensor network(WSN),Routing algorithm,Routing,Ant colony algorithm
  • 相关文献

参考文献3

二级参考文献46

  • 1Heinzelman W,Chandrakasan A,Balakrishnan H.Energy Efficient Communication Protocol for Wireless Microsensor Networks[C]//Proc.of the 33rd Annual Hawaii Int Conf.on System Sciences.Maui:IEEE Computer Society,2000:3005-3014.
  • 2Jing Yang,Yi Lin,Weili Xiong,et al.Ant Colony-Based Multi-Path Routing Algorithm for Witless Sensor Networks[C]//Proc.of the International Workshop on Intelligent Systems and Applications.Wuhan,2009:1-4.
  • 3Hedetniemi S,Lisstman A.A Survey of Gossiping and Broadcasting in Communication Networks[J].Networks,1988,18 (4):319-349.
  • 4Lindsey S,Raghavendra C S.PEGASIS:Power-Efficient Gathering in Sensor Information Systems[C]//Proc.of the IEEE Aerospace Conf.Montana:IEEE Aerospace and Electronic Systems Society,2002:1125-1130.
  • 5Jelmer van Ast,Robert Babuska,Bart De Schutter.Particle Swarms in Optimization and Control[C]//Proceedings of the 17th World Congress The International Federation of Automatic Control.Seoul,Korea,July 6-11,2008:5131-5136.
  • 6Lopez C I L,van Willigenburg L G,van Straten G.Efficient Differential Evolution Algorithms for Muhimadal Optimal Control Problems[J].Applied Soft Computing,2003,3(2):97-122.
  • 7Liu Lu,Qi Luo,Junyong Liu,et al.An Improved Particle Swarm Optimization Algorithm [C]//Granular Computing, IEEE International Conference.2008:486-490.
  • 8Kalaavathi B,Madhavi S,VijayaRagavan S,et al.Review of ant based routing protocols for manet[C]//Proc.of the 2008 Int Conf on Computing,Communieation and Networking.Thomas,2008:1-9.
  • 9Wei Gao,Qinglin Sun,Zengqiang Chen. Optimal Energy Consumption in Wireless Sensor Networks by Using the Ant Colony Algorithm(ACA)[C]//Interational Conference on Computer and Communication Technologies in Agriculture Engineering.Chengdu,2010:189-192.
  • 10Camilo T,Carreto C,Silva J,et al.An Energy-Efficient Ant-Based Routing Algorithm for Wireless Sensor Networks[C]//Proc.of the International Workshop on Ant Colony Optimization and Swarm Intelligence.Brussels,2006:49-59.

共引文献23

同被引文献21

引证文献4

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部