摘要
针对遮挡和光照等因素影响的人脸图像,提出一种具有低秩稀疏性的矩阵回归模型。该模型采用低秩性约束回归误差,采用p范数约束回归系数使其达到稀疏最大化,然后通过广义迭代阈值算法求解p范数,最后用交替方向法求解模型参数。在AR和Extended Yale B人脸数据库上的实验表明,与当前的回归算法相比,该算法具有更高的识别率,能够更好地消除由遮挡引起的结构性噪声,且对光照变化也具有更强的鲁棒性。
This paper presented a model of matrix regression for face recognition to deal with varying illumination,as well as occlusion and disguise.To ensure low rank and sparse prosperities of the model,we used low rankness to constraint the regression error,and used thep-norm to constraint the regression coefficients in order to guarantee the sparest solution.We applied generalized iterated shrinkage algorithm forp-norm,and alternating direction method for regression coefficients.Experiment results on face database of AR and Extended Yale B show that the face recognition method proposed in this paper has a higher recognition rate than the current regression methods.And our method is more powerful for removing the structural noise caused by occlusion,and more robust for alleviating the effect of illumination.
出处
《计算机科学》
CSCD
北大核心
2015年第S1期180-183 198,198,共5页
Computer Science
基金
国家自然科学基金项目(51365017
61305019)
江西省科技厅青年科学基金(20132bab211032)资助
关键词
人脸识别
核范数
ep范数
广义迭代阈值算法
鲁棒回归
交替方向乘子法
Face recognition,Nuclear norm,p-norm,Generalized iterated shrinkage algorithm,Robust regression,Alter-nating direction method o