期刊文献+

联合低秩和e_p稀疏约束矩阵回归的人脸识别算法

Face Recognition Based on Matrix Regression with Low-rank ande_p Sparse Constraints
下载PDF
导出
摘要 针对遮挡和光照等因素影响的人脸图像,提出一种具有低秩稀疏性的矩阵回归模型。该模型采用低秩性约束回归误差,采用p范数约束回归系数使其达到稀疏最大化,然后通过广义迭代阈值算法求解p范数,最后用交替方向法求解模型参数。在AR和Extended Yale B人脸数据库上的实验表明,与当前的回归算法相比,该算法具有更高的识别率,能够更好地消除由遮挡引起的结构性噪声,且对光照变化也具有更强的鲁棒性。 This paper presented a model of matrix regression for face recognition to deal with varying illumination,as well as occlusion and disguise.To ensure low rank and sparse prosperities of the model,we used low rankness to constraint the regression error,and used thep-norm to constraint the regression coefficients in order to guarantee the sparest solution.We applied generalized iterated shrinkage algorithm forp-norm,and alternating direction method for regression coefficients.Experiment results on face database of AR and Extended Yale B show that the face recognition method proposed in this paper has a higher recognition rate than the current regression methods.And our method is more powerful for removing the structural noise caused by occlusion,and more robust for alleviating the effect of illumination.
出处 《计算机科学》 CSCD 北大核心 2015年第S1期180-183 198,198,共5页 Computer Science
基金 国家自然科学基金项目(51365017 61305019) 江西省科技厅青年科学基金(20132bab211032)资助
关键词 人脸识别 核范数 ep范数 广义迭代阈值算法 鲁棒回归 交替方向乘子法 Face recognition,Nuclear norm,p-norm,Generalized iterated shrinkage algorithm,Robust regression,Alter-nating direction method o
  • 相关文献

参考文献10

  • 1Imran Naseem,Roberto Togneri,Mohammed Bennamoun.Linear Regression for Face Recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence . 2010
  • 2Wright, John,Yang, Allen Y.,Ganesh, Arvind,Sastry, S. Shankar,Ma, Yi.Robust face recognition via sparse representation. IEEE Transactions on Pattern Analysis and Machine Intelligence . 2009
  • 3Yang M,Zhang L,Yang J, et al.Robust Sparse Coding for Face Recognition. IEEE Conferenceon Computer Vision and Pattern Recognition . 2011
  • 4Liu G,Lin Z,Yu Y.Robust subspace segmentation by low-rank representation. Proceedings of the26th International Conference on Machine Learning . 2010
  • 5Zuo W,Meng D,Zhang L,et al.A generalized iterated shrinkage algorithm for non-convex sparse coding. Proceedings of the IEEE International Conference on Computer Vision (ICCV) . 2013
  • 6Ganesh A,Lin Z,Wright J, et al.Fast Algorithms for Recovering a Corrupted Low-rank Matrix. International Workshop on Computational Advances in Multi-Sensor Adaptive Processing . 2009
  • 7Huang S M,Yang J F.Kernel linear regression for low resolution face recognition under variable illumination. 2012IEEE International Conference on Acoustics,Speech and Signal Processing (ICASSP) . 2012
  • 8Yang J,Qian J,Luo L,et al.Nuclear Norm based Matrix Regression with Applications to Face Recognition with Occlusion and Illumination Changes. . 2014
  • 9Lin Zhou-chen,Chen Min-ming,Ma Yi,et al.The augmentde Lagrange multiplier method for exact recovery of corrupted lowrank matrices. http://arxiv.org/pdf/1009.5055 . 2010
  • 10Yuan X,Yang J.Sparse and low-rank matrix decomposition via alternating direction methods[OL]. http://math.nju.edu.cn/-jfyang/files/LRSD_09.pdf .

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部