摘要
在无线传感器网络(Wireless Sensor Network,WSN)中,节点信任评价作为传统的基于加密的安全体系的补充手段,可用于识别恶意节点并处理来自网络内部的攻击。针对用于数据采集的分簇WSN,从节点所采集数据的时间和空间相关性出发,构建基准云模型进行基准云校验,计算节点的自身信任和邻近节点信任,提出了一种基于信任反馈的云模型节点信任双重评价机制。仿真实验结果表明,该方案不仅能够有效检测单节点恶意攻击,也适用于同簇内多节点合谋攻击。
As the supplementary measure of the traditional encryption-based security system for wireless sensor network,trust evaluation of nodes can be employed to recognize the malicious nodes and conduct the attacks from inside of the network.With the temporal correlation and spatial correlation of the data gathered by nodes in clustered WSN for data acquisition,standard cloud benchmark was implemented with the construction of standard cloud model,the self trust and adjacent trust were computed respectively,and a two-tiered trust evaluation mechanism for nodes was proposed based on trust-feedback cloud model.Simulation results show that the proposed scheme can detect both singlenode attack and inner-cluster multi-node collusive attack effectively.
出处
《计算机科学》
CSCD
北大核心
2015年第S1期388-392,共5页
Computer Science
基金
国家自然科学基金项目:网络环境中的多播隐写理论与方法研究(61472188)
国家自然科学基金项目:基于模型的网络隐写检测研究(61170250)资助