期刊文献+

结合分水岭算法的水平集医学图像分割方法 被引量:9

Level Set Medical Image Segmentation Method Combining Watershed Algorithm
下载PDF
导出
摘要 由于医学图像中的复杂目标通常难以被完全分割,提出标记分水岭与改进型Li模型的组合图像分割算法。改进型Li模型构造了符号压力函数来取代传统的停止函数,解决了曲线单向演化的问题。标记分水岭具有较强的抑制噪声的能力,对医学图像的弱边缘具有较强的捕获能力。所以首先运用标记分水岭算法对图像进行预分割,快速准确定位目标区域边缘信息。再引入改进型Li模型算法,通过符号压力函数来指引曲线演化方向,控制演化速度大小,实现对复杂目标的完全分割。实验结果表明:全局信息和边缘信息都能被获得,该组合算法对医学图像中的复杂目标的分割效果较满意。 Complex targets of medical image are usually difficult to be completely segmented,so an image segmentation algorithm of modified Li model combining mark watershed algorithm was proposed.A symbol pressure function replaces the traditional stop function in Modified Li model,and the problem of unidirectional curve evolution is solved.Mark watershed has both stronger ability to suppress noise and stronger ability to capture weak edge of medical image.Firstly,mark watershed algorithm is used for image segmentation pretreatment,positioning information of target edge fast and accurately.Then,the modified Li model algorithm is introduced,and the symbol pressure function is used to guide curve evolution direction and control the size of the evolution speed,realizing full segmentation of complex object.The experimental results show that global information and edge information can be gooten,and the combination algorithm of complex targets can get satisfactory effect in the medical image segmentation.
出处 《计算机科学》 CSCD 北大核心 2016年第S2期193-196,共4页 Computer Science
关键词 医学图像分割 标记分水岭 改进型Li模型 符号压力函数 Medical image segmentation Mark watershed Modified Li model Sign pressure function
  • 相关文献

参考文献3

二级参考文献132

  • 1孔俊,张竞丹,吕英华,王建中,周颜军,杨志强.一种基于规则的脑组织磁共振图像分割新方法[J].计算机科学,2006,33(2):237-241. 被引量:2
  • 2吴昊,刘正熙,罗以宁,杨勇.改进多尺度分水岭算法在医学图像分割中的应用研究[J].计算机应用,2006,26(8):1975-1976. 被引量:8
  • 3杨文明,陈国斌,沈晔湖,刘济林.一种基于分水岭变换的图像分割方案[J].浙江大学学报(工学版),2006,40(9):1503-1506. 被引量:22
  • 4丛培盛,孙建忠.分水岭算法分割显微图像中重叠细胞[J].中国图象图形学报,2006,11(12):1781-1783. 被引量:27
  • 5Vincent L,Soille P.Watersheds in Digital Spaces:An Efficient Algorithm Based on Immersion Simulations[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1991,13(6):583-598.
  • 6Smet P D,Pires R L.Implementation and Analysis of an Optimized Rain Falling Watershed Algorithm[C] //Proc.of SPIE'00.San Diego,CA,USA:[s.n.] ,2000:759-766.
  • 7Karantzalos K,Argialas D.Improving Edge Detection and Watershed Segmentation with Anisotropic Diffusion and Morphological Levellings[J].International Journal of Remote Sensing,2006,27(24):5427-5434.
  • 8Vincent L,Soilh P. Watersheds in digital spaces: an efficient algorithm based on immersion simulations[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 1991,13(6) : 583- 598.
  • 9Soille P. On the Morphological Processing of Objects with Varying Local Contrast[C]//DGCI. 2003:52-61.
  • 10Dorronsoro B, Alba E. A simple cellular genetic algorithm for continuous optimization[C]//Proc of IEEE Congress on Evolutionary Computation. 2006 : 2838-2844.

共引文献83

同被引文献99

引证文献9

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部