期刊文献+

基于自适应块聚类的医学图像超分辨重建 被引量:2

Medical Image Super Resolution Reconstruction Based on Adaptive Patch Clustering
下载PDF
导出
摘要 医学图像在病人的诊疗过程中具有重要的参考意义。然而,受设备分辨率和放射剂量的影响,现有设备获得的医学图像分辨率较低,容易对最终诊疗结果产生不利影响。针对这个问题,提出了一种自适应块聚类的医学图像超分辨重建算法。首先,该算法对图像进行四叉树分解,自适应地获得不同尺度的图像块;然后,通过图像块特征提取和聚类处理得到各个不同尺度图像块的聚类中心;最后,利用聚类中心和相应的回归系数重建出高分辨率图像。实验结果表明,所提方法在医学图像重建效果和峰值信噪比、结构相似性对比等方面能够取得更好的效果。 Medical images,e.g.computed tomography(CT),magnetic resonance imaging(MRI)and positron emission tomography(PET),have important significance during the process of diagnosis and treatment for a lot of diseases.However,influenced by the restriction of equipment resolution and radiation dosage,the low resolution problem of medical images is likely to adversely affect the final diagnosis and treatment.Aiming at this problem,a medical image superresolution reconstruction algorithm of adaptive patch clustering was proposed.Firstly,a set of image patches in different scales,which is adaptive access to gray consistency,can be obtained by using of the algorithm of quad-tree decomposition for images.Then,the algorithm extracts features of these image patches,and clusters the patches to many centers of different scales after the process of clustering.Finally,the different scale centers will be used to reconstruct a high resolution image according to the clustering centers and the corresponding regression coefficients.The experimental results show that the new method performs better in medical image reconstruction,peak signal-to-noise ratio(PSNR)and structural similarity(SSIM).
出处 《计算机科学》 CSCD 北大核心 2016年第S2期210-214,共5页 Computer Science
基金 国家自然基金(61272245) 山东省科技发展计划资助项目(2014GGX101037) 济南市科技发展计划资助项目(201401216)资助
关键词 医学图像 图像超分辨重建 四叉树分解 聚类 自适应 Medical image Super resolution reconstruction of image Quad-tree decomposition Clustering Self-adaption
  • 相关文献

参考文献4

二级参考文献59

  • 1李民.基于稀疏表示的超分辨率重建和图像修复研究[D].成都:电子科技大学,2011.
  • 2Freeman W,Pasztor E,Carmichael O.Learning lowe-level vision[J].IJCV,2000,40(1):25-47.
  • 3Sun J,Zheng N,Tao H,et al.Image hallucination with primal sketch priors [C]∥CVPR.2005:36-43.
  • 4Yang J,Wright J,Huang T,et al.Image super-resolution assparse representation of raw image patches[C]∥CVPR.2008:1-8.
  • 5Yang M,Zhang L,Feng X,et al.Fisher discrimination dictionary learning for sparse representation[C]∥IEEE ICCV.2011:543-550.
  • 6Zhou N,Shen Y,Peng J,et al.Learning Inter-related Visual Dictionary for Object Recognition[C]∥CVPR.2012:3490-3497.
  • 7Chang H,Yeung D-Y,Xiong Y.Super-resolution through neighbor embedding[C]∥CVPR.2004.
  • 8Bhavsar A V. Range image super resolution via reconstruction of sparse range data [C] //Proc of 2013 Int Conf on Intelligent Systems and Signal Processing (ISSP). Piscataway, NJ: IEEE, 2013:198-203.
  • 9Tian Y, Yap K. Joint image registration and super-resolution from low-resolution images with zooming motion [J]. IEEE Trans on Circuits and Systems for Video Technology, 2013, 23(7) : 1224-1234.
  • 10Chang Ho-Hsuan, Shia Jin-Shing, Tsai Zeng-Hwa. Image registration based on CEMD [C] //Proc of the 2nd IEEE Int Syrup on Next-Generation Electronics(ISNE). Piscataway, NJ: IEEE, 2013: 537-540.

共引文献22

同被引文献11

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部