期刊文献+

云计算中基于拍卖的虚拟机动态供应和分配算法 被引量:4

Virtual Machine Dynamic Supply and Allocation Algorithm Based on Auction in Cloud Computing
下载PDF
导出
摘要 当前云计算供应商通过定价算法或类似拍卖的算法来分配他们的虚拟机(VM)实例。然而,这些算法大多要求虚拟机静态供应,无法准确预测用户需求,导致资源未得到充分利用。为此,提出了一种基于组合拍卖的虚拟机动态供应和分配算法,在做出虚拟机供应决策时考虑用户对虚拟机的需求。该算法将可用的计算资源看成是"流体"资源,且这些资源根据用户请求可分为不同数量、不同类型的虚拟机实例。然后可根据用户的估价决定分配策略,直到所有资源分配完毕。基于并行工作负载存档(Parallel Workload Archive)的真实工作负载数据进行了仿真实验,仿真结果表明所提方法可保证为云供应商带来更高收入,提高资源利用率。 Current cloud computing providers allocate their virtual machine(VM)instances via fixed price-based or auction-like mechanisms.However,most of these algorithms require static supply virtual machine,and they are unable to accurately predict the user demand,lead to underutilization of resources.To this end,an auction-based algorithm for dynamic VM provisioning and allocation was proposed that takes into account the user demand for VMs when making VM provisioning decisions.The algorithm treats the set of available computing resource as‘liquid'resources that can be configured into different numbers and types of VM instances depending on the requests of the users,and the proposed algorithm determines the allocation strategy based on the users' valuations until all resources are allocated.Our mechanism is evaluated by performing simulation experiments using traces of real workload from parallel workload archive,the results show that the proposed method can guarantee to bring the higher income for cloud providers,and improve the resource utilization rate.
出处 《计算机科学》 CSCD 北大核心 2016年第S2期311-315,341,共6页 Computer Science
基金 河南省教育厅高等学校重点科研项目(15A510039 16A510024)资助
关键词 云计算 虚拟机实例 拍卖 分配 云供应商 资源利用率 Cloud computing Virtual machine instances Auction Allocation Cloud providers Resource utilization rate
  • 相关文献

参考文献7

二级参考文献85

  • 1刘正伟,文中领,张海涛.云计算和云数据管理技术[J].计算机研究与发展,2012,49(S1):26-31. 被引量:170
  • 2李德毅,刘常昱.论正态云模型的普适性[J].中国工程科学,2004,6(8):28-34. 被引量:896
  • 3王鹏.走进云计算[M].北京:人民邮电出版社,2009.
  • 4王金波,金涬,何乐,等.虚拟化与云计算[M].北京:电子工业出版社,2009.
  • 5Grit L,Irwin D, Yumerefendi A, et al. Virtual Machine Hos- ting for Networked Clusters: Building the Foundations for Autonomic Orchestration[C]//Proc of IEEE Int'l Workshop on Virtualization Technology in Distributed Computing (VT DC), 2006.
  • 6Cardosa M, Korupolu M R,Singh A. Shares and Utilities Based Power Consolidation in Virtualized Server Environments[C]// Proc of IFIP/IEEE Integrated Network Management (IM), 2009:327-334.
  • 7Hermenier F, Lorca X, Menaud J-M. Entropy: A Consoli dation Manager for Clusters[C]//Proc of the 2009 ACM SIGPLAN/ SIGOPS Int'l Conf on Virtual Execution Envi- ronments (VEE), 2009:41-50.
  • 8Chaisiri S, Lee B-S. Optimal Virtual Machine Placement across Multiple Cloud Providers[C]//Proc of IEEE Asia Pacific Compu- ting Conference, 2009 : 103-110.
  • 9刘宝碇赵瑞清.最优化基础-模型与方法[M].北京:清华大学出版社,2005.
  • 10Philpott A. Introduction to Modeling Using Stochastic Pro gramming[R]. 2004.

共引文献254

同被引文献33

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部