期刊文献+

基于仿射投影-非线性主分量分析的盲源分离

Blind Source Separation Based on Affine Projection and Nonlinear Principal Component Analysis
下载PDF
导出
摘要 仿射投影算法(APA)重复利用数据,可提高算法的收敛速度。针对现有盲源分离收敛速度慢的问题,以盲源分离的非线性主分量分析(PCA)为基础,结合仿射投影算法,提出了盲源分离的非线性APA-PCA准则,并设计出盲源分离的APA-Kalman,APA-RLS,APA-LMS新算法。在这些新算法中,预白化后的观测向量数据被重复利用,向量式数据转变成矩阵式数据,从而加快了盲源分离的收敛速度。仿真结果表明,非线性APA-PCA准则是有效的。 The affine projection algorithm(APA)can improve the algorithm convergence speed by repeated using the data.Aiming at the problem of slow convergence in the existing blind source separation(BSS),based on the nonlinear principal component analysis(PCA)for BSS,this paper proposed a nonlinear APA-PCA criterion by using the idea of APA,and the new APA-Kalman,APA-RLS and APA-LMS algorithms for BSS is designed.In these new algorithms,the prewhitened observation vector data is utilized in a repeated fashion,and the vector data is thus converted into matrix data.The convergence rate of BSS is accelerated.The simulation results show that the nonlinear APA-PCA criterion is effective and universal.
出处 《计算机科学》 CSCD 北大核心 2016年第S2期320-323,共4页 Computer Science
基金 国家自然科学基金(61210012)资助
关键词 盲源分离 仿射投影算法 主分量分析 分离准则 Blind source separation Affine projection algorithm Principal component analysis Separation criterion
  • 相关文献

参考文献6

二级参考文献89

  • 1刘彤,吴建华,雷金平.AIS通信系统性能分析[J].交通科技,2004,14(4):134-136. 被引量:5
  • 2万坚,涂世龙,廖灿辉,等.通信混合信号盲分离理论与技术[M].北京:国防工业出版社,2012:88-90.
  • 3常青.通用船载自动识别系统AIS的研究与实现[D].北京:清华大学,2004.
  • 4Hoye G, Narheim B, Eriksen T, et al. EUCLID JP9.16: Space- Based AIS Reception for Ship Identification [M]. FFI/RAP- PORT-2004/01328 (Restricted distribution, EUCLID PMOU, 2004.
  • 5Eriksen T, H~ye G, Narheim B, et al. Maritime traffic monito- ring using a space-based AIS receiver[J]. Acta Astronautica, 2006(58) :537-549.
  • 6Jutten C, Herault J. Blind separation of sources, Part l:An a- daptive algorithm based on neuromimetie architecture [J]. Sig- nal Processing, 1991,24(1) : 1-10.
  • 7Hyvarinen A. Fast and robust fixed-point algorithms for inde- pendent component analysis [J]. IEEE Transactions on Neural Networks,1999,10(3) : 626-634.
  • 8Hyvarinen A. The FastICA Matlab package. V2. 5 [CP/OL]. http://www. Arocmag. com, 2005.
  • 9Yang H H, Amari S. Adaptive On-Line Learning Algorithms for Blind Separation-Maximum Entropy and Minimum Mutual In- formation[J]. Neural Computation, 1997,9(7) : 1457-1482.
  • 10Cardoso J F. Infomax and maximum likelihood for blind source separation [J]. IEEE Signal Processing, 1997,45 (2) : 434-444.

共引文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部