摘要
针对网络风险实时分析的迫切需求,研究并设计了适用于实时风险概率预测的马尔科夫时变模型,提出了一种网络安全实时风险概率预测方法。该方法鲁棒性较强,能够反应波动数据变化规律,起到了进行实时风险分析的作用。用DRAPA2000数据集进行了仿真,结果表明该方法具有较高的实时性和准确性。
In view of the urgent need of real-time analysis of network risk,this paper studied and designed a Markov time variant model which is suitable for real-time risk probability prediction.The method has strong robustness and can react with the variation of the wave data,which has the effect of real time risk analysis.DRAPA2000 data sets were used to carry out simulation experiments to predict the probability of the network.The results show that the model mentioned in this paper has high real-time performance and accuracy.
出处
《计算机科学》
CSCD
北大核心
2016年第S2期338-341,共4页
Computer Science
基金
中央高校基本科研业务费专项资金(30916015104)
中兴通讯产学研合作论坛合作项目:基于马尔可夫时变模型的流量数据挖掘技术研究(2016ZTE04-11)资助