期刊文献+

一种基于特征加权语言模型的微博分类新方法

New Method of Microblog Classification Based on Feature Weighted Language Model
下载PDF
导出
摘要 微博作为社交媒体的后起之秀,已经得到快速的发展。微博快速的发展在带给人们便利的同时,也使人们置身于信息的海洋。针对微博中日益呈现出的信息过载问题,微博分类已经成为一个重要的研究课题。针对微博分类,提出一种基于特征加权语言模型的微博分类新方法。在新浪微博上抽取的真实标注数据集上进行的对比实验结果表明,所提方法是一个有效的微博分类方法。 Microblog as a new social media has been rapid development.Microblog rapid development brings convenience to people at the same time,also makes people swimming in the ocean of information.Aiming at the increase in microblog presented the problem of information overload,microblog retrieval has become an important research topic.For microblog retrieval,this paper proposed a new microblog retrieval method based on feature weighted language model,and this method is mainly used in microblog statistical characteristics and semantic characteristics of combined to solve the retrieval problem of the microblog.Experiments were performed on the real annotation data set extracted from sina microblog,and the comparative experimental results show that the proposed method is an effective retrieval method.
作者 崔为娜
出处 《计算机科学》 CSCD 北大核心 2016年第S2期469-471,共3页 Computer Science
基金 吉林省自然科学基金资助课题(M6138272)资助
关键词 微博 微博分类 语言模型 Microblog Microblog classification Language model
  • 相关文献

参考文献4

二级参考文献48

  • 1朱嫣岚,闵锦,周雅倩,黄萱菁,吴立德.基于HowNet的词汇语义倾向计算[J].中文信息学报,2006,20(1):14-20. 被引量:326
  • 2徐琳宏,林鸿飞,杨志豪.基于语义理解的文本倾向性识别机制[J].中文信息学报,2007,21(1):96-100. 被引量:123
  • 3Kwok C, Etzioni O, Weld D S. Scaling question answering to the web. ACM Transactions on Information Systems, 2001, 19(3): 242-262
  • 4De Boni M, Manandhar S. The use of sentence similarity as a semantic relevance metric for question answering. In: Proceedings of the AAAI Symposium on New Directions in Question Answering. Stanford, USA: AAAI, 2003. 138-144
  • 5Miller G A, Beckwith R, Fellbaum C, Gross D, Miller K J. Introduction to wordnet: an on-line lexical database. International Journal of Lexicography, 1990, 3(4): 235-244
  • 6Attardi G, Cisternino A, Formica F, Simi M, Tommasi A, Zavattari C. PIQASso: pisa question answering system. In: Proceedings of the 10th Text Retrieval Conference. Gaithersburg, USA: NIST, 2001. 599-607
  • 7Katz B, Lin J. Selectively using relations to improve precision in question answering. In: Proceedings of the EACL 2003 Workshop on Natural Language Processing for Question Answering. Budapest, Hungary: EACL, 2003. 1-8
  • 8Sun R X, Cui H, Li K Y, Kan M Y, Chua T S. Dependency relation matching for answer selection. In: Proceedings of the 28th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. Sal- vador. Brazil: ACM. 2005. 651-652
  • 9Punyakanok V, Roth D, Yih W. Mapping dependencies trees: an application to question answering. In: Proceedings of the 8th International Symposium on Artificial Intelligence and Mathematics. Fort Lauderdale, USA: AI and MATH, 2004. 1-10
  • 10Moldovan D, Pasca M, Harabagiu S, Surdeanu M. Performance issues and error analysis in an open-domain question answering system. ACM Transactions on Information Systems. 2003, 21(2): 133-154

共引文献200

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部