期刊文献+

一种不确定RFID数据流清洗策略 被引量:4

Uncertain RFID Data Stream Cleaning Strategy
下载PDF
导出
摘要 原始RFID数据流含有大量噪声且具有不确定性,必须在使用之前对其进行数据清洗,而清洗策略是清洗质量的保证。提出一种适合不确定RFID数据流的清洗策略。该清洗策略引入了最大熵原理,对待清洗的RFID元组的特征属性进行权重选择,并根据清洗节点的时间消耗以及误差进行清洗成本分析,决策出最佳的清洗方法。仿真实验结果表明,该清洗策略提高了不确定RFID数据流的清洗效率与精度。 The original RFID data stream contains a lot of noise and uncertainty,so the data must be cleaned before using and the cleaning strategy is the guarantee of the quality of the cleaning.In this paper,a new method for cleaning the RFID data stream was proposed.The maximum entropy principle is introduced in the cleaning strategy,and this treat cleaning RFID tuple attributes to select weights.the cleaning cost analysis is performed according to the cleaning node time-consuming and error to decide the best cleaning method.Simulation experiment results show that this cleaning strategy improves the cleaning efficiency and accuracy of the RFID data stream.
出处 《计算机科学》 CSCD 北大核心 2016年第S2期482-485,共4页 Computer Science
基金 中央高校基本科研业务(LGYB201602)资助
关键词 RFID数据流 不确定性 清洗策略 清洗成本 最大熵特征选择 RFID data stream Uncertainty Cleaning strategy Cleaning costs Max-entropy feature selection
  • 相关文献

参考文献3

二级参考文献22

  • 1谷峪,于戈,张天成.RFID复杂事件处理技术[J].计算机科学与探索,2007,1(3):255-267. 被引量:54
  • 2BergerA.The improved iterative scaling algorithm: A gentle introduction.http://citeseer.nj.nec.com/31826.html,1997.
  • 3李建中 于戈 周傲英.不确定性数据管理的要求与挑战[J].中国计算机学会通讯,2009,5(4):6-14.
  • 4Koperski K, Hart J, Stefanovic N. An efficient two-step method for classification of spatial data. In: Proceedings of the International Symposium on Spatial Data Handling (SDH'98). Vancouver, 1998.45~54.
  • 5Smadja F. Retrieving collocation from text: Xtract. Computational Linguistics, 1993,19(1):143~175.
  • 6Church KP. Word association norms, mutual information, and lexicography. Computational Linguistics, 1990,16(1):22~29.
  • 7Oliver R, Ralf K, Simon F, Ingo M. A hybrid approach to feature selection and generation using an evolutionary algorithm.Technical Report, CI- 127/02, Collaborative Research Center 531,University of Dortmund, 2002.
  • 8Jain AK, Duin RPW, Mao J. Statistical pattern recognition: A review. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000,22(1):4~37.
  • 9Yao X. Evolving artificial neural networks. Proceedings of the IEEE, 1999,87(9): 1423~1447.
  • 10Kohavi R, John G. Wrappers for feature subset selection. Artificial Intelligence, 1997,97(1-2).

共引文献30

同被引文献29

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部