期刊文献+

组合SVM分类器在行人检测中的研究 被引量:8

Research of Combination SVM Classifier in Pedestrian Detection
下载PDF
导出
摘要 在基于HOG特征的SVM行人检测算法的基础上,提出了组合分类器的改进算法。该算法首先采用多尺度滑动窗口提取HOG特征,并对单个SVM分别进行训练,再将训练好的SVM分别采用串联、并联结构形成新分类器后对行人进行检测。为解决用多尺度滑动窗口提取特征时产生的目标候选区域重叠问题,采用非极大值抑制算法对重叠区域进行融合,进而得到准确候选区。实验表明,组合的SVM分类器可以有效降低误检率和漏检率。 On the basis of histogram of oriented gradient and support vector machine(HOG-SVM)algorithm,this paper proposed an improved algorithm for combination classifiers.Firstly,This algorithm uses multi-scale sliding windows to extract the HOG features and trains SVM separately.Then,the trained SVM which is formed to a new classifier in series or parallel is used to detect pedestrian.In order to solve the problem that the target area is overlapped when features are extracted in multi-scale sliding windows,the non-maximum suppression(NMS)algorithm is used to fuse the rectangles and to get exact candidate region.Experiments show that combined SVM classifiers can effectively reduce the false detection rate and missed rate.
出处 《计算机科学》 CSCD 北大核心 2017年第S1期188-191,共4页 Computer Science
基金 国家自然科学基金资助项目(61103136) 武汉工程大学创新基金资助项目(CX2015057)资助
关键词 行人检测 HOG SVM NMS 组合分类器 Pedestrian detection Histogram of oriented gradient(HOG) Support vector machine(SVM) Non-maximum suppression(NMS) Combination classifiers
  • 相关文献

参考文献4

二级参考文献80

  • 1贾慧星,章毓晋.车辆辅助驾驶系统中基于计算机视觉的行人检测研究综述[J].自动化学报,2007,33(1):84-90. 被引量:69
  • 2杜友田,陈峰,徐文立,李永彬.基于视觉的人的运动识别综述[J].电子学报,2007,35(1):84-90. 被引量:79
  • 3Geronimo D, Lopez A, Sappa A, et al. Survey of pedestrian de- tection for advanced driver assistance systems[ J]. IEEE, Trans. on Pattern Analysis and Machine Intelligence, 2010, 32 ( 7 ) : 1239- 1258.
  • 4Dollfr P,Wojek C,Schiele B,et al. Pedestrian detection:an e- valuation of the state of the art.IEEE, Trans. on Pattern Analysis and Machine InteUigence,2011,99:1 - 20.
  • 5Aggarwal J, Ryoo M. Human activity analysis: a review[J]. ACM Computing Surveys,2011,43(3),16:1-47.
  • 6Reilly V, Solmaz B, and Shah M. Geometric constraints for hu- man detection in aerial hnagery[ A] .In Proc. ECCV[C] ,2010.
  • 7Andfiluka M, Schnitzspan P, Meyer J, et al. Vision based victim detection from unmanned aerial vehicles [ A ]. In Proc. IEEE/ RSJ International Conference on Intelligent Robots and Systems (IROS) [ C]. Talpei, Taiwan, 2010.
  • 8Dollar P, Belongie S, Pemna P. The fastest pedeslrian detector in the west[A]. In Proc. BMVC[C] ,2010.
  • 9Enzweiler M, Gavrila D. Monocular pedestrian detection: sur- vey and experiments[ J]. IEEE, Trans. on Pattern Analysis and Machine Intelligence, 2009,31 (12) :2179 - 2195.
  • 10Dalai N, Tdggs B. I-listograms of oriented gradients for human detection[ A]. In Proc. 1EEE CVPR[ C], 2005,886 - 893.

共引文献179

同被引文献66

引证文献8

二级引证文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部