摘要
为了检测病害的不同程度等级,以接种炭疽病的砀山酥梨为研究对象,利用高光谱成像技术对病害进行建模分类。在400~1000nm光谱区域采集砀山酥梨样本接种炭疽病初期到发病、直至腐烂整个过程的时序高光谱图像;采用阈值分割法对图像进行背景分割,并基于有效的光谱区域做主成分分析,选取第二主成分(PC2)提取染病的感兴趣区域,并对感兴趣区域用权重系数法作特征值提取;采用非监督的分类算法对特征值进行聚类分析。通过对210个样本集进行观察分析发现,样本分类的有效程度为98.41%。实验结果表明,采用高光谱成像无损检测技术对砀山酥梨炭疽病不同程度的分类是有效的。
To detect the disease of different levels,this article took Dangshan pear which gets vaccinated of anthrax as the research object,using hyperspectral imaging technology for the modeling of disease classification.In 400~1000nm spectral region,we collected the sequential hyperspectral images of the whole process of Dangshan pear samples from inoculation of anthrax to morbidity and to decompose,used threshold segmentation to conduct background segmentation of images,and did principal composition analysis based on the effective spectral region.We selected the second principal component(PC2)to extract the infected region of interest,and used weight coefficient method for eigenvalue extraction of region-of-interest and used unsupervised classification algorithm for clustering analysis of characteristic value.Through observation and analyzation of 210 sample sets,it comes that the effective sample classification is 98.41%.The experimental results show that it is valid to make use of hyperspectral imaging nondestructive testing technology for the classification of the anthrax disease of Dangshan pear of different levels.
出处
《计算机科学》
CSCD
北大核心
2017年第S1期216-219,223,共5页
Computer Science
基金
农业部948计划项目:作物高效水肥调控物联网关键技术的引进与创新(2015-Z44)
农业部948计划延续支持重点项目(2016-X34)资助
关键词
高光谱成像技术
砀山酥梨炭疽病
光谱分析
图像处理
分类
Hyperspectral imaging technology
Anthrax Dangshan pear
Spectral analysis
Image processing
Classification