期刊文献+

基于特征距离加权的手势识别 被引量:7

Gesture Recognition Based on Weighted Feature Distance
下载PDF
导出
摘要 基于计算机视觉的手势识别是当前人机交互领域的热门研究,但由于受光照、环境等因素的影响,使得采用单一特征描述手势的方法不能很好地识别手势,因此提出一种将Hu不变矩和指尖个数特征相结合的静态手势识别方法,对采集的手势图像进行预处理,再使用肤色模型分割出手势,并采用重心距离法检测指尖个数,进而对提取的手势轮廓进行Hu值的计算,最后采用模板匹配法对特征距离进行加权和融合来识别手势。实验结果表明,与采取单一的Hu矩或指尖个数作为手势特征的方法相比,该方法可以获得更高的识别率。 Gesture recognition based on computer vision has become a hot research topic.But due to the influence of illumination,environment and other factors,method based on single feature can't identify gestures well.Therefore a method combined Hu invariant moments with number of fingertips as features of static gestures was proposed.After preprocessing the collected static gesture images,a kind of skin color model was applied to segment gesture,then the numbers of fingertips were detected by centroid distance method,and then the Hu values of the extracted gesture contour were calculated.Next the number of fingertips and Hu values were weighted respectively as gesture features.Finally the template matching was used to recognize gestures by weighting and fusing feature distance.Experimental results show that the proposed way can obtain a higher recognition rate of ten kinds of gestures than traditional Hu invariant moments feature recognition method and fingertip detection recognition method.
出处 《计算机科学》 CSCD 北大核心 2017年第S1期220-223,共4页 Computer Science
基金 四川省科技厅应用基础项目(2014JY0208) 西南石油大学科研起航计划(2014QHZ026) 四川省教育厅科研项目(14ZB0051)资助
关键词 静态手势 肤色模型 重心距离法 指尖 HU不变矩 模板匹配 Static gesture Skin color model Centroid distance method Fingertip Hu invariant moments Template matching
  • 相关文献

参考文献3

二级参考文献31

  • 1Lamberti Luigi, Camastra Francesco. Real-time hand gesture recog- nition using a color glove [ C ]. International Conference on Image Analysis and Processing ,2011:365-373.
  • 2Yao Yi, Li Chang-tsun. A framework for real-time hand gesture rec- ognition in uncontrolled environments with partition matrix model based on hidden conditional random fields [ C ]. IEEE International Conference on Systems,Man,and Cybernetics (SMC) ,2013 : 1205- 1210.
  • 3Angelopoulou Anastassia, Jose Garcfa-rodriguez, Psarrou Alexan- dra. Learning 2D hand shapes using the topology preserving model GNG[C]. 9th European Conference on Computer Vision, 2006: 313-324.
  • 4Wan Jun, Ruan Qiu-qi, Li Wei, et al. One-shot learning gesture rec- ognition from RGB-D data using bag of features[ J]. The Journal of Machine Learning Research,2013,4 ( 1 ) :2549-2582.
  • 5Shen Xiao-hui, Gang Hua, Lance Williams, et al. Dynamic hand gesture recognition : an exemplar-based approach from motion diver- gence fields [ J ]. Image and Vision Computing, 2012,30 ( 3 ) : 227- 235.
  • 6Keskin Cem, Kirac Furkan, Kara Yunus, et al. Real time hand pose estimation using depth image [ C ]. IEEE International Conference on Computer Vision Workshops,2011 : 1228-1234.
  • 7Ajallooeian Mostafa, Borji Ali, Araabi Babak-nadjar, et al. Fast hand gesture recognition based on saliency maps:An application to inter- active robotic marionette playing [ C ]. In : The 18th 1EEE Interna- tional Symposium on Robot and Human Interactive Communica- tion, 2009 : 841-847.
  • 8Pisharady Pramod-kumar, Vadakkepat Prahlad, Lob Ai-poh. Atten- tion based detection and recognition of hand postures against com- plex backgrounds [J]. International Journal of Computer Vision, 2013,101 (3) :403-419.
  • 9Just Agnes, Marcel Sebastien. A comparative study of two state-of- theart sequence processing techniques for hand gesture recognition [J]. Computer Vision and Image Understanding, 2009,113 ( 4 ) : 532 -543.
  • 10Pisharady Pramod-kumar, Vadakkepat Prahlad, Loh Ai-poh. Graph matching based hand posture recognition using neuro-biologically inspired features[ C ]. In International Conference on Control, Au- tomation, Robotics and Vision (ICARCV) ,2010 : 1151-1156.

共引文献72

同被引文献61

引证文献7

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部