摘要
传统的视觉背景提取算法中存在阴影敏感、前景点误判、前景空洞等问题。为了更好地提取园林游客的前景,在研究分析多种背景建模方法的基础上,提出一种Lab颜色空间下改进的ViBe游客检测算法,对算法的准确性和鲁棒性进行了测试。实验结果表明,该算法通过建立实时更新的背景模型,提高了游客检测的准确率,能够有效地适应光照变化并且能够去除阴影。针对园林内不同地点的复杂场景,改进的ViBe算法具有更好的检测效果。
There are several problems in traditional visual background extraction algorithm,such as sensitivity to shadow of light,the wrong judged points of prospect,the hole of prospect and so on.In order to better segment the prospects of garden tourists,based on the analysis of a variety of building background model methods,this paper presented an improved tourist detection algorithm ViBe in Lab color space,and also tested the accuracy and robustness of improved ViBe algorithm.The results showed that the algorithm built an updated background model to improve the accuracy of tourist detection,it adapted to the change of light effectively and removed the shadow.By the analysis of different locations' video of garden,the improved ViBe algorithm has better detection results.
出处
《计算机科学》
CSCD
北大核心
2017年第S1期224-228,共5页
Computer Science
基金
2013年国家自然科学基金项目:基于"驻点"分布规律的江南私家园林空间路径量化研究(0601602)资助