期刊文献+

浅谈降低小小区部署开销的方法

Introduction of Overhead Reduction for Small Cell Deployment
下载PDF
导出
摘要 当今社会对移动数据的需求已呈爆发式增长,有限的资源容量极大地影响了业务量的拓展与提升。考虑到无线数据发生的不均衡性,增加小小区部署无疑成为了应对业务量增长的有效方法。重点研究了降低小小区中上下行参考信号、控制信令开销的可行途径,并提出一种通过部署小小区提高小区密度的方法。与宏小区部署相比,该方法能有效降低小小区的开销,提升资源使用效率。 The demand for mobile data in today's society grows explosively,but the limited capacity of the resources severely affects the expansion and improvement of business capacity.Taking the imbalance in the occurrence of wireless data into account,increasing the deployment of small-area cells will undoubtedly become the effective approach.By examining the method to reduce the overhead of the uplink and downlink reference signals and control signaling in small cells,this paper introduced a method to improve cell density by deploying small cells.Compared with the macro-cell deployments,this proposed method can effectively reduce the cost of small cells,and enhance the efficiency of resource usage.
作者 茹新宇 刘渊
出处 《计算机科学》 CSCD 北大核心 2017年第S1期322-325,共4页 Computer Science
基金 国家自然科学基金(61602213) 江苏省自然科学基金(BK20151131)资助
关键词 小小区 宏小区 子帧 参考信号 控制信令 用户设备 基站 Small cell Macro cell Subframe Reference signal Control signaling UE eNB
  • 相关文献

参考文献5

二级参考文献42

  • 13GPP TR 36.902. LTE; Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Self-configuring and self- optimizing network (SON) use cases and solutions[S]. 2011.
  • 2Yilmaz O N C, Hamalainen J, and Hamalaincn S. Self- optimization of remote electrical tilt[C]. Proceedings of IEEE 21st International Symposium on Personal Indoor and Mobile Radio Communications (PIMRC 2010), Instanbul, Turkey, 2010: 1128-1132.
  • 3Kasem F, Haskou A, and Dawy Z. On antenna parameters self optimization in LTE cellular networks[C]. Proceedings of 3rd International Conference on Communications and Information Technology (ICCIT 2013), Beirut, Lebanon, 2013:44 -48.
  • 4Engels A, Reyer M, Xu X, et al.. Autonomous self- optimization of coverage and capacity in LTE cellular networks[J]. IEEE Transactions on Vehicular Technology, 2013, 62(5): 1989-2004.
  • 5Razavi R, Klein S, and Claussen H. Self-optimization of capacity and coverage in LTE networks using a fuzzy reinforcement learning approach[C]. Proceedings of IEEE 21st International Symposium on Personal Indoor and Mobile Radio Communications (PIMRC 2010), Instanbul, Turkey, 2010: 1865-1870.
  • 6U1 Islam M N and Mitschele-Thiel A. Reinforcement learning strategies for self-organized coverage and capacity optimization[C]. Proceedings of 2012 IEEE Wireless Communications and Networking Conference (WCNC 2012), Shanghai, China, 2012: 2818-2823.
  • 7Combes R, Altman Z, and Altman E. Scheduling* gain for frequency-selective Rayleigh-fading channels with application to self-organizing packet scheduling[J]. Performance Evaluation, 2011, 68(8): 690-709.
  • 8FP 7 SOCRATES Project. Final report on self-organisation and its implications in wireless access networks[R]. 2010: 63-69.
  • 9Kushner H J and Whiting P A. Convergence of proportionai- fair sharing algorithms under general conditions[J]. IEEE Transactions on Wireless Communications, 2004, 3(4): 1250-1259.
  • 10Agrawal R, Bedekar A, La R J, et al.. Class and channel condition based weighted proportional fair scheduler[C]. Proceedings of the International Teletraffic Congress ITC-17, Salvador da Bahia, Brazil, 2001: 553-565.

共引文献85

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部