期刊文献+

基于关联矩阵的短信自动分类

SMS Automatic Classification Based on Relational Matrix
下载PDF
导出
摘要 短信自动分类是短文本研究的热点问题。针对此问题,提出了关联强度和关联矩阵特征提取方法,并设计了基于关联矩阵的全监督学习算法。为了实现系统的自我学习,探讨了基于关联矩阵的半监督学习算法,其结合了人工矫正的主动学习算法。最后通过实例验证说明了算法的有效性。 SMS automatic classification is a hot issue of short text study.In this problem,this paper put forward to the feature extraction method of relational strength and the relational matrix,and designed a fully supervised learning algorithm based on relational matrix.In order to implement the system of self learning,this paper also discussed a semi-supervised learning algorithm based on relational matrix,which combines with active learning algorithm of the artificial modification.Finally the experiment results illustrate the effectiveness and efficiency of this algorithm.
作者 李锋 万小强
出处 《计算机科学》 CSCD 北大核心 2017年第S1期428-432,共5页 Computer Science
基金 上海市自然基金项目(16ZR1401100)资助
关键词 短文本 短信自动分类 关联矩阵 半监督学习 主动学习 Short text SMS automatic classification Relational matrix Semi-supervised learning Active learning
  • 相关文献

参考文献21

二级参考文献233

共引文献141

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部