期刊文献+

社会网络中基于社群衰减的影响力最大化算法 被引量:2

Influence maximization algorithm on internal decay based on community structure in social network
下载PDF
导出
摘要 针对现有网络传播模型忽略了信息传播过程中的信息衰减,传统影响力最大化算法无法有效利用社群结构提高影响力传播范围的问题,提出一种基于社群结构的影响力最大化算法——社群衰减的影响力最大化(IMID)算法。首先对整个社会网络进行社群结构划分,评估社群中节点影响力范围,并考虑社群之间关联点之间的关联概率,在信息传播过程中增加节点之间信息传播衰减度计算。通过实验与分析,该算法不仅降低了时间复杂度,还获得了接近贪心算法的影响力传播范围,影响覆盖率达到90%以上。因此,在核心种子节点集和连接社群之间纽带节点选取若干节点作为初始节点,会让信息以最小的代价在网络中获得广泛传播。 The existing network spread model ignores the information attenuation in the process of information spread,and the traditional influence maximization algorithm cannot effectively use the community structure to improve the influence spread range.To solve these problems,an algorithm of Influence Maximization on Internal Decay(IMID)based on community structure was proposed.Firstly,the community structure of a whole social network was divided and the influence range of nodes in the community was evaluated.Then,with spread probability of association points between the communities considered,the attenuation degree of information spread between nodes was calculated.Experimental and analysis results show that the proposed algorithm not only reduces the time complexity,but also obtains the influence transmission range near that of greedy algorithm,with influence coverage over 90%.Therefore,with several nodes selected as the initial nodes between the core seed node set and connected communities,information will be widely spread in the network at the minimum cost.
作者 孙子力 彭舰 仝博 SUN Zili;PENG Jian;TONG Bo(College of Computer Science,Sichuan University,Chengdu Sichuan 610065,China)
出处 《计算机应用》 CSCD 北大核心 2019年第3期834-838,共5页 journal of Computer Applications
关键词 信息传播 影响力最大化 社会网络 社群划分 information spread influence maximization social network community division
  • 相关文献

参考文献3

二级参考文献32

  • 1Kempe D, Kleinberg J, Tardos E. Maximizing the spread of influence in a social network//Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Washington, USA, 2003: 137-146.
  • 2Chen Wei, Wang Ya Jun, Yang Si Yu. Efficient influence maximization in social networks//Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Dis covery and Data Mining. Paris, France, 2009:199 208.
  • 3Young H P. The diffusion of innovations in social net works//Blume L, Durlauf S. The Economy as a Complex System III. USA: Oxford University Press, 2003:1-19.
  • 4Watts D J. A simple model of global cascades on random net works. National Academy of Sciences, 2002, 99(9): 5766- 5571.
  • 5Goldenberg J, Libai B, Muller E. Talk of the network: A complex systems look at the underlying process of word-of- mouth. Marketing Letters, 2001, 12(3): 211-223.
  • 6Estevez Pablo A, Vera Pablo, Saito Kazumi. Selecting the most influential nodes in social networks//Proceedings of the International Joint Conference on Neural Networks. Orlando, Florida, USA, 2007:2397-2402.
  • 7Suri N Rama, Narahari Y. Determining the top k nodes in social networks using the shapely value (Short Paper)//Proceedings of the 7th International Joint Con{erence on Autono mous Agents and Multiagent Systems. Estoril, Portugal, 2008:1509-1512.
  • 8Wang YiTong, Feng XiaoJun. A potential-based node selection strategy for influence maximization in a social network//Proceedings of the 5th International Conference on Advanced Data Mining and Applications. Bering, China, 2009: 350-361.
  • 9Leskovec J, Huttenlocher D, Kleinberg J. Signed networks in social media//Proceedings of the 28th International Conference on Human Factors in Computing Systems. Atlanta, USA, 2010: 1361 -1370.
  • 10Sun Shi-Wei, Ling Lun-Jiang, Zhang Nan, Li Guo-Jie, Chen Run-Sheng. Topological structure analysis of the proteinprotein interaction network in budding yeast. Nucleic Acids Research, 2003, 31(9): 2443-2450.

共引文献81

同被引文献6

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部