期刊文献+

基于决策树的路面破损图像快速识别仿真 被引量:2

Rapid Recognition of Pavement Damage Based on Decision Tree
下载PDF
导出
摘要 路面破损图像的快速识别方法在提高图像使用率方面具有重要意义。对路面破损图像进行快速识别时,需对破损图像的密度指标进行计算,确定破损图像的结构。传统方法主要根据破损图像的权重进行研究,忽略了图像灰度值的影响,导致破损图像识别率低、实时性差的问题。提出基于决策树的路面破损图像快速识别方法。根据路面破损图像的像素值和图像大小,对路面破损图像的水平和垂直投影进行计算,获得破损图像的特征值,提取图像的边缘值,并计算路面破损图像的边界矩阵、中心边界矩阵和规格化边界矩阵,得到图像的子块总量,计算路面破损裂缝的夹角值,利用破损图像的样本数据和图像的向量转置来确定破损图像的超平面的分类,并对其分类进行优化和求解,判断路面破损图像的类别,计算路面破损图像分类的中心距离,实现对路面破损图像的快速识别。仿真结果表明,提出方法不仅提高了图像的识别率,还具有实时性。 Traditionally, the method mainly ignores the influence of grayscale value of image, resulting in low recognition rate and poor real-time performance. In this paper, we focus on a method to quickly recognize damaged pavement surface image based on decision tree. Based on the pixel value and image size of damaged pavement surface image, we calculated the horizontal projection and vertical projection of damaged pavement surface image and obtained the feature value of damaged image. After that, we extracted the edge value of image and calculated the boundary matrix, the center boundary matrix and the standardizing boundary matrix of damaged pavement surface image, and then we obtained the total number of sub-blocks. Moreover, we calculated the intersection angle value of damaged pavement cracks and used the sample data of damaged image and the vector transposition of image to determine the classification of hyperplane. Meanwhile, we optimized and solved the classification, so as to judge the category of damaged pavement surface image. Finally, we calculated the center distance of classification for damaged pavement surface image. Thus, we achieved the repaid recognition of damaged pavement surface image. Simulation results verify that the proposed method improves the recognition rate of image. Meanwhile, this method has the real-time performance.
作者 王嘉宁 苏翀 WANG Jia-ning;SU Chong(School of Electrical and Information Engineering,Jiangsu University of Science and Technology,Suzhou Jiangsu 215600,China)
出处 《计算机仿真》 北大核心 2019年第2期427-430,438,共5页 Computer Simulation
基金 中国博士后科学基金项目(2016M600430)
关键词 决策树 路面破损 图像快速识别 Decision tree Pavement surface damage Repaid recognition of image
  • 相关文献

参考文献10

二级参考文献83

  • 1左文明.连通区域提取算法研究[J].计算机应用与软件,2006,23(1):97-98. 被引量:31
  • 2张小琳.图像边缘检测技术综述[J].高能量密度物理,2007(1):37-40. 被引量:70
  • 3蒋爱德,扈少华.基于Canny算子的边缘检测研究[J].郑州牧业工程高等专科学校学报,2007,27(2):38-40. 被引量:2
  • 4黄新波,孙钦东,程荣贵,张冠军,刘家兵.导线覆冰的力学分析与覆冰在线监测系统[J].电力系统自动化,2007,31(14):98-101. 被引量:149
  • 5Steger C,Ulrich M.机器视觉算法与应用[M].北京:清华大学出版社,2008:179-183.
  • 6黄新波,孙钦东,王小敬,武键,刘家兵.输电线路危险点远程图像监控系统[J].高电压技术,2007,33(8):192-197. 被引量:58
  • 7杨帆.数字图象处理与分析[M]北京:北京航空航天大学出版社,2007.
  • 8CABRAL R, DE LA TORRE F, COSTEIRA J P, et al. Matrix completion for weakly-supervised multi-label Image classification [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(1) : 121 - 135.
  • 9HUANG Y, WU Z, WANG L, et al. Feature coding in image classification: a comprehensive study [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(3) : 493 - 506.
  • 10SHAO L, LIU L, LI X. Feature learning for image classification via multiobjective genetic programming [ J]. IEEE Transactions on Neural Networks and Learning Systems, 2014, 25(7) : 1359 - 1371.

共引文献173

同被引文献24

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部