期刊文献+

大数据时代社交网络信息传输隐私保护仿真 被引量:15

Social Network Information Transmission Privacy Protection Simulation in the Era of Big Data
下载PDF
导出
摘要 大数据在给生活带来便利的同时,也给信息安全带来了隐患,针对当前方法存在的隐私信息泄露概率高、隐私信息保护效率低的问题,提出一种基于隐私保护模型和信息加密的隐私保护方法。创建信宿数学模型,定义一个信源熵,并引入隐私条件熵和平均隐私互信息量,对条件熵和互信息量进行计算,并利用基于RSA和Paillier的单一同态密码体制的隐私保护方法对用户的隐私信息进行加密,实现大数据时代下社交网络信息传输隐私的保护。仿真结果表明,所提方法隐私信息泄露率低、保护效率高,并且具有信息传输隐私保护用时短的优点。 At present,big data not only bring convenience to our life,but also bring hidden trouble to information security.Therefore,this article presented a method to protect privacy based on privacy protection model and information encryption.Firstly,we built a mathematical model of information sink and defined an information source entropy,and then introduced the privacy conditional entropy and average privacy mutual information amount.Moreover,we calculated the conditional entropy and mutual information amount.Meanwhile,we used the privacy protection method based on monomorphism cryptosystem of RSA and Paillier to encrypt the private information.Thus,we realized the privacy protection of information transmission in social network under the era of big data.Simulation results show that the proposed method has low leakage rate of private information and high protection efficiency.Meanwhile,this method needs short time for privacy protection of information transmission.
作者 吴光凤 陶汝虚 尹雨诗 WU Guang-feng;TAO Ru-xu;YIN Yu-shi(School of Tropical Crop,Yunnan Agricultural University,Pu'er Yunnan 665099,China)
出处 《计算机仿真》 北大核心 2019年第4期107-110,189,共5页 Computer Simulation
关键词 大数据 社交网络 信息传输 隐私保护 Big data Social network Information transmission Privacy protection
  • 相关文献

参考文献10

二级参考文献127

  • 1江小平,李成华,向文,张新访,颜海涛.k-means聚类算法的MapReduce并行化实现[J].华中科技大学学报(自然科学版),2011,39(S1):120-124. 被引量:79
  • 2曹珍富.密码学的新发展[J].四川大学学报(工程科学版),2015,47(1):1-12. 被引量:27
  • 3石耀霖,朱守彪.用GPS位移资料计算应变方法的讨论[J].大地测量与地球动力学,2006,26(1):1-8. 被引量:99
  • 4余智欣,黄天戍,杨乃扩,汪阳.一种新型的分布式隐私保护计算模型及其应用[J].西安交通大学学报,2007,41(8):954-958. 被引量:8
  • 5YANG D J, XUE G L, FANG X, et al. Incentive mechanisms for crowdsensing: crowdsourcing with smartphones[J]. IEEE/ A CM Transactions on Networking, 2015, 99: 1-13.
  • 6GAO S, MA J F, SHI W S, et al. TrPF: A trafectory privacy-preserving framework for participatory sensing[J]. IEEE Transactions on Information Forensics and Security, 2013, 8(6): 874-887.
  • 7MOHAN P, PADMANABHAN V N, and RAMJEE R. Nericelh rich monitoring of road and traffic conditions using mobile smartphones[C]. Proceedings of the ACM Conference on Embedded Networked Sensor Systems, North Carolina, 2008: 323-336.
  • 8MONTJOYE Y A, HIDALGO C A, VERLEYSEN M, et al. Unique in the crowd: The privacy bounds of human mobility[R]. Nature Science Report, Cambridge, 2013.
  • 9CHRIS M, DAVID Y, and NUNG Y. Privacy vulnerability of published anonymous mobility traces[J]. IEEE Transactions on Networking, 2013, 21(3): 720-733.
  • 10孙利民,李红,王笑寒,等.物联网位置隐私保护综述[J].软件学报,2014,25(s1):1-10.

共引文献162

同被引文献127

引证文献15

二级引证文献50

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部