期刊文献+

一种最有趣的序列模式挖掘算法

A Mining Algorithm of the Most Interesting Sequential Patterns
下载PDF
导出
摘要 序列模式挖掘作为数据挖掘的重要课题,在许多实际应用中也是一个重要且具有挑战性的任务。传统的序列模式挖掘算法通常以频度作为兴趣模式的标准且缺乏序列模式的优良扩展,挖掘结果质量不高。现提出一种最有趣的序列模式挖掘(Interesting Sequential Patterns Mining,ISPM)算法,定义一种新的序列模式兴趣度度量方法,同时采用分支定界的搜索方式对所有可能的候选序列进行遍历,并利用相关剪枝策略和位图的数据结构提高挖掘效率。通过手语表达序列、网站点击流、购物篮等数据集验证了算法的有效性。 Sequential pattern mining has been wildly used in the analysis of data in practical application as an important part of data mining.Traditional sequential pattern mining algorithms usually take frequency as the proxy of interesting patterns,and lack of excellent extension of sequential pattern.The quality of the mining results is not high.This paper proposes an efficient algorithm for mining the most interesting sequential patterns(ISPM).A new method of evaluating interesting sequential pattern was defined and a new branch-and-bound algorithm was taken to travel all possible candidate sequential patterns.We used related pruning strategy and data structure of bitmap to improve mining efficiency.Experiments on sign language utterance,web click stream sequences,shopping basket sequences and other sequential datasets confirmed the effectiveness of the proposed algorithm.
作者 李涛 张帅弛 张灿 LI Tao;ZHANG Shuai-chi;ZHANG Can(School of Electronic&Information Engineering,Nanjing University of Information Science and Technology,Nanjing Jiangsu 210044,China)
出处 《计算机仿真》 北大核心 2019年第4期199-204,264,共7页 Computer Simulation
基金 公益性行业(气象)科研专项(GYHY201306070) 江苏省高等学校大学生创新创业训练计划项目(201610300031)
关键词 数据挖掘 序列模式 位图 兴趣度 Data mining Sequential pattern Bitmap Interestingness
  • 相关文献

参考文献3

二级参考文献45

共引文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部