期刊文献+

随机与谐和激励联合作用下非线性系统的有限差分解 被引量:1

Finite Difference Solution of Nonlinear System Subjected to Harmonic and Stochastic Excitations
下载PDF
导出
摘要 研究了高斯白噪声与谐和激励联合作用下非线性系统对应FPK方程的瞬态解。基于九点隐式有限差分格式,给出FPK方程的差分数值解,并应用于4类不同的非线性振子,求得了相应的瞬态解,并研究了边缘概率密度函数和联合概率密度函数随时间的演化历程。 In this paper,the transient probability density function of nonlinear system subjected to harmonic and stochastic excitations is investigated.Based on the implicit finite difference method,the transient probability density function of nonlinear system is proposed.The non-stationary response of four types of nonlinear oscillators are employed.The evolution of marginal probability density function and joint probability density function is discussed.
作者 崔杰 孙鹏 吴杰 姜文安 CUI Jie;SUN Peng;WU Jie;JIANG Wenan(School of Naval Architecture and Ocean Engineering,Jiangsu University of Science and Technology,212003,Zhenjiang,Jiangsu,PRC)
出处 《江西科学》 2019年第1期5-16,共12页 Jiangxi Science
基金 国家自然科学基金项目(51779111) 江苏省高校自然科学研究重点项目(17KJA580002/17KJA416003)
关键词 FPK方程 瞬态解 有限差分法 FPK equation transient solution finite difference method
  • 相关文献

参考文献3

二级参考文献15

  • 1孙中奎,徐伟,杨晓丽.求解强非线性动力系统响应的一种新方法[J].动力学与控制学报,2005,3(2):29-35. 被引量:4
  • 2Lin Y K, Cai G Q. Probabilistic structural dynamics: advanced theory and applications. New York: McGraw-Hill, 1995.
  • 3LIN Y K,CAI G Q. Probabilistic Structural Dynamics :Advanced Theory and Applications[M]. 1995.
  • 4WOJTKICWICZ S F, BERGMAN L A. High fidelity numerical solutions of the Fokker-Planck equation [A]. Structural Safety and Reliability [C]. ShiraiShi, Shinozuki and Wen (eds), 1998 : 933-940.
  • 5SPENCER B F,JR L A. Bergman solution of Fokker- Planck eq.ations in higher dimension: Application of the concurrent finite element method[A]. Structural Safety and Reliability [C].ShiraiShi, Shinozuki and Wen (eds) , 1998,859-865.
  • 6PRADLWARTER H J, SCHUELLER G I. On advanced Monte Carlo simulation procedures in stochastic structural dynamics [J]. International Journal of Non-linear Mechamics, 1997,32 : 735-744.
  • 7NESS A, MOE V. Efficient path integeration methods for nonlinear dynamics systems[J]. Probabilistic Engineering Mechanics, 2000,15 : 221-231.
  • 8JOHSON E A etnal, Paralled processing in computational stochastic dynamics [J]. Probabilistic Engineering Mechanics, 2003,18 : 37-60.
  • 9易大义,李庆杨.数值方法[M].高等教育出版社.
  • 10黄志龙,张丽强.用差分法与超松弛迭代法求高维平稳FPK方程的解[J].计算力学学报,2008,25(2):177-182. 被引量:9

共引文献9

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部