期刊文献+

图和补图的无号拉普拉斯谱半径之和的2个新上界

Two New Upper Bounds on the Sum of the Signless Laplacian Spectral Radius of A Simple Graph and Its Complement
下载PDF
导出
摘要 图G=(V,E)为n阶有限图,A和D分别表示图G的邻接矩阵及度矩阵。R=D+A称为图G的无号拉普拉斯矩阵。利用代数方法和微积分中函数极值条件,对图和补图的无号拉普拉斯谱半径之和的上界进行了估计,得出了2个新的上界。 Let G=(V,E)be a finite graph with n vertices,the matrix A,D denote the adjacency matrix and the diagonal matrix of a graph G,respectively.The matrix D+A is called the signless Laplacian.In the paper,we consider two new upper bounds on the sum of the signless laplacian spectral radius of a simple graph and its complement by means of algebraic method and the condition of maxium and minimum of a function.
作者 曾春华 衷敬奎 ZENG Chunhua;ZHONG Jingkui(College of Science,Jiangxi Agricultural University,330045,Nanchang,PRC;Nanchang No.10 Middle School,330006,Nanchang,PRC)
出处 《江西科学》 2019年第1期32-34,共3页 Jiangxi Science
关键词 简单图 补图 无号拉普拉斯矩阵 谱半径 simple graph complement signless laplacian spectral radius
  • 相关文献

参考文献2

二级参考文献10

  • 1汪天飞.图的拟拉普拉斯矩阵的最大特征值[J].乐山师范学院学报,2005,20(5):14-15. 被引量:3
  • 2[1]Merris R. Laplacian matrices of graphs: A survey[J]. Linear A lgebra and Its Applications. 1994, 197-198: 143-176.
  • 3[2]Mohar B. Laplace eigenvalues of graphs:a survey[J]. Discrete Mathema tics. 1992,109:171-183.
  • 4[3]Cvetkovic D M, Doob M, Sachs H. Spectra of graph:theory and application s[M]. New York: Academic Press,1980.
  • 5[4]Grossman J W, Kulkarni D M. Algebaic graph theory without orientation[ J]. Linear Algebra and Its Applications. 1994,212-213:289-307.
  • 6[5]Van Den Heuvel J, Hamilton cycles and eigenvalues of graphs[J]. Linea r Algebra and Its Applications. 1995,226-228: 723-730.
  • 7[6]Desai M, Rao V. A characterization of the smallest eigenvalue of a graph [J]. Journal of Graph Theory, 1994,18(2):181-194.
  • 8王朝瑞.图论[M].北京:北京理工大学出版社,2004.
  • 9陈跃辉.关于图的谱半径的注记[J].漳州师院学报,1997,11(2):102-103. 被引量:1
  • 10黄晓农.图的度序列与Laplace谱半径[J].河北师范大学学报(自然科学版),2002,26(6):561-563. 被引量:1

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部