期刊文献+

淬火工艺对BR1500HS超高强度硼钢板组织与性能的影响 被引量:12

Effect of quenching process on microstructure and mechanical properties of BR1500HS ultra-high strength boron steel plate
原文传递
导出
摘要 研究了淬火加热温度和保温时间对BR1500HS超高强度硼钢板的抗拉强度、硬度等力学性能和显微组织的影响。结果表明,随着淬火温度的升高,抗拉强度和硬度逐渐增加,当保温时间大于8 min时,淬火温度越高,组织越粗大,试验钢的抗拉强度和硬度降低。试验钢合理的淬火工艺为淬火温度900~950℃、保温时间4~8 min,在此工艺下淬火的BR1500HS超高强度硼钢板马氏体转变完全,具有较好的综合力学性能。 Effect of different austenitizing temperature and holding time on microstructure and mechanical properties of BR 1500 HS ultra-high strength boron steel was investigated .The results show that with the increase of austenitizing temperature , the tensile strength and hardness increase.The higher the temperature , the coarser the microstructure , and the tensile strength and hardness of the tested steel reduce when the holding time is longer than 8 min.The proper heat treatment process of the tested steel is to austenitize at 900-950 ℃ for 4-8 min. Martensitic transformation has completed after the proper treatment process , which leads to good mechanical properties of BR 1500 HS ultra-high strength boron steel plate .
出处 《金属热处理》 CAS CSCD 北大核心 2014年第4期84-87,共4页 Heat Treatment of Metals
关键词 超高强度硼钢板 淬火温度 保温时间 力学性能 显微组织 ultra-high strength boron steel austenitizing temperature holding time mechanical property microstructure
  • 相关文献

参考文献10

二级参考文献41

  • 1王轶农,李星逸,孟祥才,廖波.淬火温度和晶粒尺寸对27SiMnB钢淬透性的影响[J].金属热处理,1994,19(5):33-35. 被引量:4
  • 2Denis S, Gautier E, Simon A, et al. Stress-phase-transformation interactions-basic principles, modeling and calculation of internal stresses [ J]. Materials Science and Technology, 1985,1 ( 10 ) : 805 - 814.
  • 3Inoue T,Arimoto K. Development and implementation of CAE system " HEARTS" for heat treatment simulation based on metallo-thermao-mechauics [ J ]. Materials Engineering and Performance, 1997,6 ( 1 ) :51 - 60.
  • 4Ferguson B L, Li Z, Freborg A M. Modeling heat treatment of steel parts[ J]. Computational Materials Science,2005,34 (3) :274 -281.
  • 5Simsir C,Gtir C H. 3D FEM simulation of steel quenching and investigation of the effect of asymmetric geometry on residual stress distribution [ J]. Materials Processing Technology, 2008,207 ( 1 - 3 ) :211 - 221.
  • 6Lee S J, Lee Y K. Finite element simulation of quench distortion in a low-alloy steel incorporating transformation kinetics [ J ]. Acta Materialia,2008, 56(7) :1482 - 1490.
  • 7Arimoto K, Yamanaka S, Michiharu N, et al. Explanation of the origin of quench distortion and residual stress in specimens using computer simulation [ J ]. Microstructure and Materials Properties,2009,4 ( 2 ) : 168 - 186.
  • 8Inoue T, Yamaguchi T, Wang Z G. Stresses and phase transformations occurring in quenching of carburized steel gear wheel[ J ]. Material Science and Technology, 1985,1 ( 10 ) : 872 - 876.
  • 9Li H P, Zhao G Q, He L F. Finite element method based simulation of stress-strain field in the quenching process [ J]. Materials Science and Engineering A, 2008,478 ( 1 - 2 ) : 276 - 290.
  • 10Li H P,Zhao G Q,Niu S T,et al. FEM simulation of quenching process and experimental verification of simulation results[ Jl. Materials Science and Engineering A, 2007,452 - 453 ( 4 ) :705 - 714.

共引文献169

同被引文献76

引证文献12

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部