期刊文献+

加热方式对Zr48Cu36Ag8Al8块体非晶合金晶化机制的影响 被引量:1

Effect of heating method on crystallization of Zr48Cu36Ag8Al8 bulk metallic glass
原文传递
导出
摘要 采用铜模吸铸法制备了Zr48Cu36Ag8Al8块体非晶合金,并利用同步示差扫描量热仪(DSC)对其晶化动力学进行研究。结果表明:通过对不同升温速率下的DSC曲线进行分析,根据Kissinger方程计算获得的Zr48Cu36Ag8Al8非晶合金的晶化激活能约为239 k J/mol;而根据经典JMA模型,通过对在过冷液相区内不同温度(703~743 K)的等温DSC曲线进行计算获得的等温晶化激活能为341 k J/mol,造成的差异主要归因于高温区与低温区晶化机制的差异。此外,通过对比晶化产物的组织相貌,还发现不同加热方式组织的生长速率的控制方式不同。 Zr48Cu36Ag8Al8 bulk metallic glass was prepared by copper die suction casting,and its crystallization kinetics was studied by means of synchronous differential scanning calorimeter(DSC).The results show that the crystallization activation energy of Zr48Cu36Ag8Al8 bulk metallic glass is about 239 k J/mol based on the DSC curve at different heating rate.According to the classic JMA model,isothermal activation energy of 341 k J/mol is obtained by calculating isothermal DSC curves at different temperatures(703-743 K)in the supercooled liquid region,which is mainly attributed to the difference in crystallization mechanism between the high temperature zone and the low temperature zone.In addition,by comparing the morphologies of the crystallization products,it’s also found that the growth rate of the microstructure is controlled differently by different heating methods.
作者 孙琳琳 乔勋 党波 张宁 王逸飞 Sun Linlin;Qiao Xun;Dang Bo;Zhang Ning;Wang Yifei(College of Mechanical Engineering,Xijing University,Xi'an Shaanxi 710123,China)
出处 《金属热处理》 CAS CSCD 北大核心 2019年第8期41-44,共4页 Heat Treatment of Metals
基金 陕西省教育厅科研计划项目(17JK1156) 西京学院科研基金项目(XJ160223)
关键词 非晶合金 晶化 激活能 加热 metallic glass crystallization activation energy heating
  • 相关文献

参考文献1

二级参考文献16

  • 1Chiang C L, Chu J P, Lo C T et al. Intermetallics[J], 2004, 12: 1057.
  • 2Zhang W, Zhang Q, Qin C et al. Materials Science and Engineering B[J], 2008, 148:92.
  • 3Jiang J Z, Saksl K. Materials Science and Engineering A[J], 2004, 375-377:733.
  • 4Van de Moorte'le B, Epicier I", Pelletier J Met al. Journal of Non-Crystalline Solids[J], 2004, 345-346:169.
  • 5Wang M L, Hui X D, Feng Q et al. Rare Metal Materials and Engineering[J], 2013, 42(11): 2217 (in Chinese).
  • 6Park B J, Chang H J, Kim D H et al. Physical Review Letters[J], 2006, 96:245 503.
  • 7Mattem N, Kiihn U, Gebert A et al. Scripta Materialia[J], 2005, 53:271.
  • 8Ren Y L, Zhu R L, Sun J et al. Journal of Alloys and Compounds [J], 2010, 493:46.
  • 9Pan J, Liu L, Chan K C. Scripta Materialia[J], 2009, 60:822.
  • 10Oh J C, Ohkubo T, Kim Y C. Scripta Materialia[j], 2005, 53:165.

共引文献5

同被引文献15

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部