期刊文献+

求解Riesz空间分数阶扩散方程的一种新的数值方法

A NEW NUMERICAL METHOD FOR SOLVING RIESZ SPACE-FRACTIONAL DIFFUSION EQUATION
原文传递
导出
摘要 本文利用Diethelm方法构造了一种逼近Riesz空间分数阶导数的O(△x^(3-α))格式,其中1 <α<2,△x是空间步长.进一步对一阶时间导数采用Crank-Nicolson方法离散,得到了求解Riesz空间分数阶扩散方程的一种新的有限差分格式,并用矩阵方法证明了稳定性和收敛性,其误差估计为O(△t^2+△x^(3-α)),其中△t为时间步长.最后,数值算例验证了差分格式的正确性和有效性. By using Diethelm’s method,we construct an approximate scheme to the Riesz space fractional derivative with order O(△x3-α),where 1<a<2 and△x denotes the space step size.Further we discretize the time derivative with the Crank-Nicolson method and obtain a new finite difference method for solving Riesz space fractional diffusion equation.The stability and convergence are proved by the matrix method and the error estimate in the maximum norm is O(△t2+△x3-α),where At denotes the time step size.Finally,some numerical examples are given to illustrate their correctness and efficiency.
作者 杨晋平 李志强 闫玉斌 Yang Jinping;Li Zhiqiang;Yan Yubin(Department of Mathematics,Luliang University,Lvliang 033001,China;Department of Mathematics,University of Chester,Chester CHI 4BJ,UK)
出处 《计算数学》 CSCD 北大核心 2019年第2期170-190,共21页 Mathematica Numerica Sinica
基金 山西省自然科学基金(201801D121010) 吕梁学院校内基金(ZRXN201511)资助项目
关键词 Riesz导数 Crank-Nicolson方法 稳定性 收敛性 Riesz derivative Crank-Nicolson method Stability Convergence
  • 相关文献

参考文献1

二级参考文献77

  • 1Agrawal 0. Formulation of Euler-Lagrange equations for fractional variational problems [J]. J.Math. Anal. Appl., 2002, 272: 368-379.
  • 2Agrawal O. A general formulation and solution scheme for fractional optimal control problems [J].Nonlinear. Dynam., 2004, 38: 191-206.
  • 3Benson D, Schumer R, Meerschaert M, Wheatcraft S. Fractional dispersion, Levy motion, andthe MADE tracer tests [J]. Transp. Por. Media., 2001, 42(1/2): 211-240.
  • 4Benson D, Wheatcraft S, Meerschaert M. Application of a fractional advection-dispersion equa-tion [J]. Water. Resour. Res., 2006, 36: 1403-1412.
  • 5Benson D, Wheatcraft S, Meerschaert M. The fractional-order governing equation of Levy mo-tion [J]. Water. Resour. Res., 2006, 36: 1413-1423.
  • 6Gafiychuk V, Datsko B, Meleshko V. Mathematical modeling of time fractional reactiondiffusionsystems [J]. J. Math. Anal. Appl., 2008, 220(1-2): 215-225.
  • 7Gorenflo R, Mainardi F, Scalas E, Raberto M. Fractional calculus and continuous-time financeIII: the diffusion limit [G]‘ In Mathematical finance, pages 171-180. Springer, 2001.
  • 8Koeller R. Applcation of fractional calculus to the theory of viscoelasticity [J]. J. Appl. Mech., 1984, 51: 229-307.
  • 9Kusnezov D, Bulgac A, Dang G. Quantum levy processes and fractional kinetics [J]. Phys. Rev.Lett., 1999, 82: 1136-1139.
  • 10Meerschaert M, Scalas E. Coupled continuous time random walks in finance [J]. Phys. A., 2006,390: 114-118.

共引文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部