摘要
本文利用Diethelm方法构造了一种逼近Riesz空间分数阶导数的O(△x^(3-α))格式,其中1 <α<2,△x是空间步长.进一步对一阶时间导数采用Crank-Nicolson方法离散,得到了求解Riesz空间分数阶扩散方程的一种新的有限差分格式,并用矩阵方法证明了稳定性和收敛性,其误差估计为O(△t^2+△x^(3-α)),其中△t为时间步长.最后,数值算例验证了差分格式的正确性和有效性.
By using Diethelm’s method,we construct an approximate scheme to the Riesz space fractional derivative with order O(△x3-α),where 1<a<2 and△x denotes the space step size.Further we discretize the time derivative with the Crank-Nicolson method and obtain a new finite difference method for solving Riesz space fractional diffusion equation.The stability and convergence are proved by the matrix method and the error estimate in the maximum norm is O(△t2+△x3-α),where At denotes the time step size.Finally,some numerical examples are given to illustrate their correctness and efficiency.
作者
杨晋平
李志强
闫玉斌
Yang Jinping;Li Zhiqiang;Yan Yubin(Department of Mathematics,Luliang University,Lvliang 033001,China;Department of Mathematics,University of Chester,Chester CHI 4BJ,UK)
出处
《计算数学》
CSCD
北大核心
2019年第2期170-190,共21页
Mathematica Numerica Sinica
基金
山西省自然科学基金(201801D121010)
吕梁学院校内基金(ZRXN201511)资助项目