期刊文献+

军交运费数据特征及预测模型研究 被引量:1

Data Characteristic and Prediction Model for Military Transportation Charge
下载PDF
导出
摘要 针对军交运费数据的时序特性,提出基于差分自回归移动平均(ARIMA)模型的时间序列分析法。以某单位2009—2014年的军交运费值为样本数据,建立季节ARIMA模型,并预测2015年的军交运费。实验结果表明,所建立的模型充分考虑了军交运费的时序特性,具有较好的预测拟合精度,预测结果可为军交财务管理人员的经费预算工作提供科学依据。 To improve the correctness and utilization benefit of prediction value of military transportation charges, the paper puts forward a time series analysis method on the basis of autoregressive integrated moving average(ARIMA) model, and establishes a seasonal ARIMA model with a certain unit’s freight data in the period of time from 2009 to 2014, to forecast freight value in 2015. The experimental results show that the seasonal model has a good prediction fitting precision due to time series characteristics of charge data, and can provide scientific basis for financial managers to do budget work.
出处 《军事交通学院学报》 2018年第10期22-26,31,共6页 Journal of Military Transportation University
基金 军委后勤保障部科研计划项目(BJJ15L011)
关键词 军交运费 时间序列分析法 ARIMA military transportation charge time series analysis method ARIMA
  • 相关文献

参考文献3

二级参考文献20

  • 1王斌,楼颖稚,张肖宁.视频监控的发展及在电力系统中的应用[J].电力系统通信,2004,25(11):57-60. 被引量:13
  • 2程远国,段立.基于数据仓库的数据挖掘技术在指挥控制系统中的应用[J].情报指挥控制系统与仿真技术,2005,27(6):67-69. 被引量:2
  • 3Rakesh Agrawal,Ramakrishnan Srikant.Mining sequential patterns[C]//Proceedings of 11 th Conference of Data Engineering,1995:3-14.
  • 4Ramakrishnan Srikant,Rakesh Agrawa.Mining sequential patterns:Generalization and performance improvement[C]//Proceedings of 5th Int.Conf.Extending Database Technology,1996,1057:3-17.
  • 5(美)Pang-NingTan,(美)MichaelSteinbach,(美)VipinKumar著,范明,范宏建等.数据挖掘导论[M]人民邮电出版社,2006.
  • 6Yoo S J. Efficient traffic prediction scheme for real-time VBR MPEG video transmission over high-speed net- works[J]. IEEE Trans on Broadcasting, 2002, 48(1): 10-18.
  • 7Tsybakov B. Traffic Modeling and Analysis[D]. New York: Dept of Electrical Computer and Systems Eng, Rensselaer Polytechnic Inst, 1998.
  • 8Pang Mingbao, Zhao Xinping. Traffic flow prediction of chaos time series by using subtractive clustering for fuzzy neural network modeling [C]//2nd International Sympo- sium Intelligent Information Technology Application. Shanghai, China, 2008: 23-27.
  • 9Mandelbrot B. Self-similar error clusters in communica- tion systems and the concept of conditional stationar- ity[J]. IEEE Trans on Communication Technology, 1965, 13(1) : 71-90.
  • 10Riedi R H, V6hel J L. TCP Traffic is Multifractah A Numerical Study[R]. Houston: Rice University, 1997.

共引文献7

同被引文献8

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部