期刊文献+

基于MCKD与OFSC的变转速下滚动轴承故障特征提取 被引量:1

MCKD and OFSC-Based Fault Feature Extraction of Rolling Bearing at Variable Speed
下载PDF
导出
摘要 针对阶频谱相关(OFSC)法解决变转速下旋转机械故障诊断时易受背景噪声干扰的问题,通过最大相关峭度解卷积(MCKD)降低随机噪声的干扰,增强原始信号的故障脉冲;分析降噪后的信号,在三维空间中计算其阶频谱相关;依据降噪后信号的时频分布划定高能量频率区间,对三维OFSC进行集成运算,得到二维表达的OFSC,呈现故障信号的各类特征阶次。内圈点蚀故障模拟试验表明,二维OFSC能够清晰识别变转速下滚动轴承故障特征阶次,验证所提方法的有效性。 To eliminate background noise disturbance encountered by order-frequency spectral correlation(OFSC)method when used to diagnose the faults of a rotating mechanism,the paper combines maximum correlated kurtosis deconvolution(MCKD)with OFSC method to extract the fault features of a rolling bearing.It uses MCKD method to remove the random signal from original signal,thus obtaining denoised one with fault impulse intensified.After integration in the high energy frequency range delimited by time-frequency distribution of denoised signal,the three-dimensional OFSC can be expressed as two-dimensional form presenting various feature orders of the fault signal collected at variable speed.The simulated pitting failure test of inner ring validates the effectiveness of this new method.
作者 郑建波 夏均忠 白云川 吕麒鹏 杨钢钢 ZHENG Jianbo;XIA Junzhong;BAI Yunchuan;LYU Qipeng;YANG Ganggang(Fifth Team of Cadets,Army Military Transportation University,Tianjin 300161,China;Military Vehicle Engineering Department,Army Military Transportation University,Tianjin 300161,China)
出处 《军事交通学院学报》 2019年第4期47-51,共5页 Journal of Military Transportation University
关键词 滚动轴承 变转速 最大相关峭度解卷积(MCKD) 阶频谱相关(OFSC) rolling bearing variable speed MCKD OFSC
  • 相关文献

参考文献4

二级参考文献37

  • 1李志农,吕亚平,范涛,冷传广.基于经验模态分解的机械故障欠定盲源分离方法[J].航空动力学报,2009,24(8):1886-1892. 被引量:18
  • 2WANG Junfeng,SHI Tielin,HE Lingsong,YANG Shuzi.FREQUENCY OVERLAPPED SIGNAL IDENTIFICATION USING BLIND SOURCE SEPARATION[J].Chinese Journal of Mechanical Engineering,2006,19(2):286-289. 被引量:6
  • 3MING Y, CHEN J, DONG G M. Weak fault featureextraction of rolling bearing based on cyclic Wiener filterand envelope spectrum[J]. Mechanical System and SignalProcessing,2011, 25: 1773-1785.
  • 4QIU H, JAYL, LIN J? et al. Wavelet filter-based weaksignature detection method and its application on rollingbearing element bearing prognosdcs[J]. Journal of SoundandWjration, 2006,289: 1066-1090.
  • 5BIN G F, GAO J J, LI X J. Early fault diagnosis ofrotating machinery based on wavelet packets-empiricalmode decomposition feature extraction and neuralnetwoik[J]. Mechanical System and Signal Processing,2012,27: 696-711.
  • 6WALDEN A T_ Non-Gaussian reflectivity, entropy anddeconvolution[J]. Geophys, 1985,50(12): 2862-2888.
  • 7WIGGINS R A. Minimum entropy deconvolution,geophys[J]. Exploration,1978, 16: 21-35.
  • 8ANTONI J,BONNARDOT F, RAAD A. Cyclostationarymodeling of rotating machine vibration signals[J].Mechanical System and Signal Processings 2004, 18(6):1285-1314.
  • 9RANDALL R B, ANTONI J, CHOBSAARD S. Therelationship between spectral correlation and envelopewlysis in the diagnostics of beaiing faults and othercyclostationaiy machine signals[J]. Mechanical Systemsand Signal Processing, 2001,15(5): 945-962.
  • 10Purushotham V, Narayanana S, Prasad A N. Multi-fault diagnosis of rolling bearing elements using wavelet analysis and hidden Markov model based fault recognition[ J]. Journal of NDT & E International, 2005, 38:654- 664.

共引文献206

同被引文献13

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部