期刊文献+

基于CS和MOMEDA的滚动轴承故障特征提取 被引量:4

Fault Feature Extraction of Rolling Bearing Based on CS and MOMEDA
下载PDF
导出
摘要 滚动轴承发生故障时会产生周期性脉冲,在噪声干扰下微弱特征难以提取且运算效率低。应用多点优化最小熵解卷积修正(MOMEDA)方法提取故障周期,增强周期性脉冲信号,但在实际运用中该方法提取故障周期的运算效率较低。应用压缩感知(CS)方法对原始信号进行预先处理,通过稀疏表示以及正交匹配追踪算法(OMP)信号重构达到降噪目的。通过试验验证MOMEDA较之其他方法的优越性,CS方法对前者运算效率的提升具有明显效果。 Fault bearing generates periodic impulses,and it is difficult to extract weak features and the computational efficiency is low under noise interference.In this paper,it firstly extracts fault period and enhances periodic impulsive signal with MOMEDA(multi-point optimization minimum entropy deconvolution adjusted)method,but the computational efficiency of this method is low in practical application.Then,it pre-treats the original signal with CS(compressive sensing)method,and achieves noise reduction with sparse representation and OMP(orthogonal matching pursuit)signal reconstruction.The experiments show that MOMEDA is superior to other methods,and CS method has obvious effect on improving the operation efficiency of the former.
作者 吕麒鹏 夏均忠 白云川 郑建波 杨刚刚 LYU Qipeng;XIA Junzhong;BAI Yunchuan;ZHENG Jianbo;YANG Ganggang(National Defense Traffic Department,Army Military Transportation University,Tianjin 300161,China;Military Vehicle Engineering Department,Army Military Transportation University,Tianjin 300161,China;Fifth Team of Cadets,Army Military Transportation University,Tianjin 300161,China)
出处 《军事交通学院学报》 2019年第8期47-52,共6页 Journal of Military Transportation University
关键词 滚动轴承 故障特征提取 压缩感知 多点优化最小熵解卷积修正 rolling bearing fault feature extraction compressive sensing(CS) multi-point optimization minimum entropy deconvolution adjusted(MOMEDA)
  • 相关文献

参考文献5

二级参考文献44

  • 1David L Donoho. Compressed sensing[ J ]. Information Theory, IEEE Transactions, 2006, 52 (4) : 1289 - 1306.
  • 2Emamnuel J Candes. Compressive sampling [ R]. Proceedings on the International Congress of Mathematicians: Madrid, Au- gust 22 - 30, 2006 : invited lectures.
  • 3Emmanuel Candes, Justin Romberg, Terence Tao. Robust uncertainty principles: Exact signal reconstruction from highly in- complete frequency information [ J ]. Information Theory, IEEE Transactions, 2006, 52 (2) : 489 - 509.
  • 4Baraniuk R, Steeghs P. Compressive radar imaging [ R]. IEEE Radar Conference, Waltham, Massachusetts, April 2007.
  • 5Lustig M, Donoho D L, Pauly J M. Sparse MRI: The application of compressed sensing for rapid MR imaging[ J]. Magnetic Resonance in Medicine, 2007, 58(6) : 1182 -1195.
  • 6Quer G, Masiero R, Munaretto D, etc. On the Interplay Between Routing and Signal Representation for Compressive Sensing in Wireless Sensor Networks [ R ]. Information Theory and Applications Workshop (ITA 2009), San Diego, CA.
  • 7Mishali M, Eldar Y C. Xampling: Compressed sensing of analog signals[ M ]. Cambridge, UK: Cambridge University Press, 2012.
  • 8Griffin A, Hirvonen T, Tzagkarakis C, et al. Single - channel and muhi - channel sinusoidal audio coding using compressed sensing[J]. Audio, Speech, and Language Processing, IEEE Transactions on, 2011, 19(5) : 1382 -1395.
  • 9Emamnuel J Candies. The restricted isometry property and its implications for compressed sensing [ J ]. Comptes Rendus Mathematique, 2008, 346(9): 589-592.
  • 10Scott Shaobing Chen, David L Donoho, Michael A Saunders. Atomic decomposition by basis pursuit [ J ]. SIAM journal on scientific computing, 1998, 20 ( 1 ) : 33 - 61.

共引文献68

同被引文献41

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部