期刊文献+

Fractional Cooling Strategy of the Hot-Stamping Process and Its Influence on Formability and Mechanical Properties of Ultra-High-Strength Steel Parts 被引量:1

Fractional Cooling Strategy of the Hot-Stamping Process and Its Influence on Formability and Mechanical Properties of Ultra-High-Strength Steel Parts
原文传递
导出
摘要 The effects of forming temperature on the formability and product properties of hot-stamping boron steel B1500HS were investigated. Based on the fractional cooling strategy, boron steel sheets were heated to achieve full austenitization before they were removed from the furnace and cooled to the forming temperature using different cooling methods. Subsequently,they were simultaneously press-formed and quenched inside the tool until the martensitic transformation was finished. A series of thermal tensile tests were conducted to study the effects of forming temperatures on the stamping performance indices, including elongation, yield ratio, and hardening exponent. Then, the mechanical properties and microstructures of the hot-stamped products were characterized. Finally, an irregular part was formed using different fractional cooling strategies, while its formability and springback phenomena were discussed. The results show that using a fast-cooling method to reach 650 °C as the forming temperature optimizes the formability of the tested B1500HS boron steel. The best mechanical properties and smallest springback values were achieved using this optimal strategy. The effects of forming temperature on the formability and product properties of hot-stamping boron steel B1500HS were investigated. Based on the fractional cooling strategy, boron steel sheets were heated to achieve full austenitization before they were removed from the furnace and cooled to the forming temperature using different cooling methods. Subsequently,they were simultaneously press-formed and quenched inside the tool until the martensitic transformation was finished. A series of thermal tensile tests were conducted to study the effects of forming temperatures on the stamping performance indices, including elongation, yield ratio, and hardening exponent. Then, the mechanical properties and microstructures of the hot-stamped products were characterized. Finally, an irregular part was formed using different fractional cooling strategies, while its formability and springback phenomena were discussed. The results show that using a fast-cooling method to reach 650 °C as the forming temperature optimizes the formability of the tested B1500HS boron steel. The best mechanical properties and smallest springback values were achieved using this optimal strategy.
出处 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2019年第3期343-351,共9页 金属学报(英文版)
基金 supported by the National Natural Science Foundation of China under Grants 51775336 and U1564203 the Shanghai Pujiang Program under Grant No. 17PJD019
关键词 Hot-stamping FRACTIONAL COOLING FORMING temperature FORMABILITY Hot-stamping Fractional cooling Forming temperature Formability
  • 相关文献

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部