期刊文献+

镇海炼化乙烯装置智能优化控制技术应用 被引量:4

Applications of intelligent optimization control technology in ethylene plant of Zhenhai refining and chemical company
原文传递
导出
摘要 近年来,镇海炼化采用智能优化控制技术稳定和优化100万吨乙烯装置的运行操作,取得了显著的成效和良好的经济效益。首先简要介绍了乙烯装置的工艺流程和技术特点,然后给出了乙烯装置智能优化控制的方法和总体技术架构,分别介绍了裂解炉和分离单元的优化控制方法,接着分析了智能优化控制技术的应用效果,最后进行了总结和展望。 In recent years, Zhenhai refinery and chemical company has employed intelligent optimization control technology to stabilize and optimize the operation of the one-million-tons ethylene plant. The remarkable effectiveness and economic benefits have been achieved. Firstly, the process flow and technical characteristics of the ethylene plant are briefly introduced. Then technical framework of the intelligent optimization control approaches of the ethylene plant are proposed. The intelligent optimization control methods of the cracking furnaces, separation and hydrogenation units are introduced respectively, and then the results of the intelligent optimization control technology are presented. The conclusions are drawn in the last section.
作者 陈燕斌 CHEN Yanbin(SINOPEC Zhenhai refining&chemical company,Ningbo 315207,Zhejiang,China)
出处 《计算机与应用化学》 CAS 北大核心 2018年第9期759-766,共8页 Computers and Applied Chemistry
关键词 乙烯装置 智能优化控制 裂解炉 分离单元 Ethylene plant Intelligent optimization control Cracking furnace Separation unit
  • 相关文献

参考文献5

二级参考文献18

  • 1Chen Bin(陈滨).Ethylene Industry(乙烯工学).Beijing: Chemical Industry Press, 1997:223-243.
  • 2Zhu Kaihong(朱开宏).Chemical Process Simulation(化工流程模拟).Beijing:China Petrochemical Press, 1993.
  • 3Funahashi K J. On the approximate realization of continuous mapping by neural networks. Neural Networks, 1989 (2): 183-192.
  • 4Piovoso M J, Kosanovich K A. Applications of multivariate statistical methods to process monitoring and controller design. Int. J. Control, 1994, 59:743-765.
  • 5Qin S J, Dunia R. Determining the number of principal components for Best reconstruction. J. Process Control, 2000, 10 (2): 245-250.
  • 6Dunia R, Qin S J, Edgar T F, McAvoy TJ. Identification of faulty sensors using principal component analysis. AIChE J., 1996, 42:2797-2812.
  • 7Wise B M, Ricker N L, Velkamp D J, Kowalski B R. A theoretical basis for the use of principal component models for monitoring multivariate processes. Process Control and Quality, 1990 (1): 41-51.
  • 8Vapnik V. The Nature of Statistical Learning Theory. New York: Springer Verlag, 1995.
  • 9Suykens J A K, VandewaIie J. Least squares support vector machine classifiers. Neural Processing Letters (S1370-4621), 1999, 9 (3): 293-300.
  • 10杨友麒.乙烯工厂的模拟、先进控制及实时优化[J].石油化工,1999,28(11):788-793. 被引量:20

共引文献31

同被引文献25

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部