期刊文献+

基于ILNS-SVDD的多工况过程故障检测应用研究 被引量:4

Research on application of fault detection based on ILNS-SVDD in multi-state process
原文传递
导出
摘要 为了提高支持向量数据描述(Support Vector Data Description, SVDD)方法在多工况过程故障检测中建模的准确性,提出了改进的局部近邻标准化(Improved Local Neighbor Standardization, ILNS)和SVDD结合的过程检测方法。首先寻找每个样本的第一近邻样本,再寻找第一近邻样本的局部前k近邻集,用近邻集的均值和标准差进行数据标准化,然后对标准化数据利用SVDD进行数据检测。改进的局部近邻标准化方法能够将多模态数据融合为单模态数据,建立更为准确地SVDD模型,提高了SVDD多工况过程检测精度,通过数值仿真和半导体数据实验,验证了ILNS-SVDD方法的有效性及优良性。 In order to improve the accuracy of the Support Vector Data Description(SVDD)method in multicase process fault detection,a process detection method based on Improved Local Neighbor Standardization(ILNS)and SVDD was proposed.First,look for the first neighbor sample of each sample,find the local top-k nearest neighbor set of the first neighbor sample,use the mean and variance of the neighbor set to normalize the data,and then use the SVDD to perform data detection on the normalized data.The improved local neighbor normalization method can fuse multi-modal data into single-mode data,so that the data satisfies the application conditions of SVDD,and the ILNS method improves the detection capability of the SVDD multi-operation process.Through numerical simulation and semiconductor data simulation experiments,the effectiveness and feasibility of the method are verified.
作者 谢彦红 薛志强 冯立伟 张成 李元 XIE Yanhong;XUE Zhiqiang;FENG Liwei;ZHANG Cheng;LI Yuan(Research Center for Technical Process Fault Diagnosis and Safety,Shenyang University of Chemical Technology,Shenyang 110142,Liaoning,China)
出处 《计算机与应用化学》 CAS 北大核心 2019年第1期1-8,共8页 Computers and Applied Chemistry
基金 国家自然科学基金面上资助项目(61673279 61490701) 辽宁省教育厅重点实验室基础研究项目(LZ2015059) 辽宁省教育厅一般项目(L2015432) 辽宁省自然科学基金项目(2015020164)
关键词 多模态 局部近邻标准化 支持向量数据描述 故障检测 multimode local neighbor normalization support vector data description fault detection
  • 相关文献

参考文献6

二级参考文献37

  • 1刘毅,王海清.Pensim仿真平台在青霉素发酵过程的应用研究[J].系统仿真学报,2006,18(12):3524-3527. 被引量:44
  • 2Venkatasubramanian V, Rengaswamy R, Kavuri S N. A review of process fault detection and diagnosis, part Ⅱ: qualitative models and search strategies. Computers and Chemical Engineering, 2003, 27(3): 313-326
  • 3Hyvarinen A, Oja E. Independent component analysis: algorithms and applications. Neural Network, 2000, 13(4-5): 411 - 430
  • 4Zou L, Zhu S A, He B. ICA-based EEG spatio-temporal dipole source localization: a model study. In: Proceedings of the 3rd International Symposium on Neural Networks. Chengdu, China: Springer, 2006. 566-572
  • 5Mantini D, Perrucci M G, Cugini S, Ferretti A, Romani G L, Gratta C D. Complete artifact removal for EEC recorded during continuous fMRI using independent component analysis. Neuroimage, 2007, 34(2): 598-607
  • 6Rennie S J, Aarabi P, Frey B J. Variational probabilistic speech separation using microphone arrays. IEEE Transactions on Audio, Speech, and Language Processing, 2007, 15(1): 135-149
  • 7Kano M, Tanaka S, Hasebe S, Hashimoto I, Ohno H. Monitoring independent components for fault detection. American Institute of Chemical Engineers Journal, 2003, 49(4): 969-976
  • 8Lee J M, Yoo C K, Lee I B. Statistical process monitoring with independent component analysis. Journal of Process Control, 2004, 14(5): 467-485
  • 9Lee J M, Qin S J, Lee I B. Fault detection and diagnosis based on modified independent component analysis. American Institute of Chemical Engineers Journal, 2006, 52(10): 3501-3514
  • 10Tax D M J, Duin R P W. Support vector data description. Machine Learning, 2004, 54(1): 45-66

共引文献76

同被引文献35

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部