期刊文献+

基于卷积神经网络的图像隐写分析方法 被引量:10

Image steganalysis based on convolution neural network
下载PDF
导出
摘要 为了提高卷积神经网络(CNN)在图像隐写分析领域的分类效果,构建了一个新的卷积神经网络模型(steganalysis-convolutional neural networks,S-CNN)进行隐写分析。该模型采用两层卷积层和两层全连接层,减少了卷积层的层数;通过在激活函数前增加批量正规化层对模型进行优化,避免了模型在训练过程中陷入过拟合;取消池化层,减少嵌入信息的损失,从而提高模型的分类效果。实验结果表明,相比传统的图像隐写分析方法,该模型减少了隐写分析步骤,并且具有较高的隐写分析准确率。 In order to improve the recognition effect of convolutional neural networks( CNN) in image steganalysis,this paper constructed a new steganalysis-convolutional neural networks model( S-CNN) for steganalysis. The model reduced the number of layers of the convolution layer by using two layers of convolution layer and two layers of the whole connection layer. By adding the batch normalization layer to optimize the model before the activation function,to avoid the model in the training process into the over-fitting. The cancellation of the pool layer reduced the loss of embedded information,thereby improving the classification effect of the mode. The experimental results show that,compare with the traditional steganalysis methods,the proposed model reduces the steganalysis step and has higher steganalysis accuracy.
作者 魏立线 高培贤 刘佳 刘明明 Wei Lixian;Gao Peixian;Liu Jia;Liu Mingming(Key Laboratory for Network & Information Security of Chinese Armed Police Force,Engineering University of Chinese Armed Police Force,Xi’an 710086,China;Dept. of Electronic Technology,Engineering University of Chinese Armed Police Force,Xi’an 710086,China)
出处 《计算机应用研究》 CSCD 北大核心 2019年第1期235-238,共4页 Application Research of Computers
基金 国家自然科学基金资助项目(61403417) 国家重点研发计划资助项目(2017YFB0802002) 陕西省自然科学基础研究计划资助项目(2016JQ6037)
关键词 图像隐写分析 卷积神经网络 批量正规化 激活函数 image steganalysis CNN batch normalization activation function
  • 相关文献

参考文献2

二级参考文献20

  • 1FRIDRICH J, GOLJIAN M, DU Rui. Lossless data embedding:new paradigm in digital watermarking[J]. EURASIP Journal on Applied Signal Process ,2005,14(2) :253-266.
  • 2TIAN J. Reversible data embedding using a difference expansion[ J]. IEEE Trans in Circuits and Systems for Video Technology, 2003,13 ( 8 ) : 890- 896.
  • 3ADANA M A. Reversible watermarking using difference expansion of quads [ C ]//Proc of IEEE International Conference on Acoustics, Speech, and Signal Processing, 2004 : 1147- 1156.
  • 4NI Z C, SHI Y, ANSARI N. Reversible data hiding[ J]. IEEE Trans on Circuits and System for Video Technology,2006,16 (3) :354-362.
  • 5LIN C C, HSUEH N L, A lossless data hiding scheme based on three- pixel block difference[ J]. Pattern Recognition,2008,41 (4) :1415- 1425.
  • 6REN Hong-e, CHANG Chun-wu, ZHANG Jian. Image hiding algorithm based on displacement block on odd-even layer[ C ]//Proc of International Workshop on Chaos-Fractal Theories and Applications. 2009 : 186-189.
  • 7PENVY T, BAS P, FRIDRICH J. Steganalysis by subtractive pixel adjacency matrix [ J]. IEEE Transaction on Information Forensics and Security, 2010, 5(2): 215-224.
  • 8LYU S, FARID H. Steganalysis using higher-order image statistics [ J]. IEEE Transactions on Information Forensics and Security, 2006, 1(1): 111-119.
  • 9SHI YUNQING, XUAN GUORONG, ZOU DEKUN, et al. Image steganalysis based on moments of characteristic functions using wavelet decomposition, prediction-error image, and neural network [ C]//Proceedings of 2005 IEEE International Conference on Multi- media and Expo. Piscataway, NJ: IEEE Press, 2005:269 -272.
  • 10HOLOTYAK T, FRIDRICH J, VOLOSHYNOVSKIY S. Blind sta- tistical steganalysis of additive steganography using wavelet higher or- der statistics [ C]//Proceedings of the 9th IFIP TC-6 TC-11 Confer- ence on Communications and Multimedia Security, LNCS 3677. Berlin: Springer, 2005:273 - 274.

共引文献10

同被引文献45

引证文献10

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部