期刊文献+

差分隐私模型的启发式隐私参数设置策略 被引量:3

Heuristic privacy parameter setting strategy for differential privacy model
下载PDF
导出
摘要 隐私参数ε能度量隐私保护程度及噪声量,但是其设置只能依赖于实验或专业人士经验,限制了差分隐私模型的使用与推广。针对这个问题,基于(ρ_1,ρ_2)-隐私模型提出一种启发式的隐私参数ε设置策略(limit privacy breaches in differential privacy,LPBDP),分析隐私参数ε与(ρ_1,ρ_2)的内在联系,实现噪声量的添加由(ρ_1,ρ_2)决定。LPBDP通过如下启发式原则设置隐私参数ε:如果攻击者关于目标受害者的先验概率小于阈值ρ_1,攻击者得到差分隐私查询策略返回的加噪结果后,关于目标受害者的后验概率必须小于阈值ρ_2。实验表明,LPBDP能够更直观地设置隐私参数ε以满足差分隐私约束。 The privacy parameter ε can measure the degree of privacy protection and the amount of noise,however,the setting of the privacy parameter ε can only depend on the experience of the lab or the professional experience,limiting the adoption and popularize of the differential privacy model. Aiming at this problem,this paper proposed a kind of heuristic privacy parameter ε setting strategy( limit privacy breaches in differential privacy,LPBDP) based on the( ρ1,ρ2)-privacy model. It analyzed the intrinsic relationship between the privacy parameter ε and( ρ1,ρ2),and determined the addition of the noise quantity by the parameters( ρ1,ρ2). LPBDP set the privacy parameter ε by the following heuristic principle: if the attacker’s prior probability of the target victim was less than the threshold ρ1,then,the attacker’s posterior probability of the victim of the target must be less than threshold ρ2. Experiments show that LPBDP can more visually set the privacy parameter ε to meet the differential privacy constraints.
作者 欧阳佳 肖政宏 刘少鹏 印鉴 林丕源 Ouyang Jia;Xiao Zhenghong;Liu Shaopeng;Yin Jian;Lin Piyuan(College of Computer Science, Guangdong Polytechnic Normal University,Guangzhou 510665,China;School of Data & Computer Science,Sun Yat-sen University,Guangzhou 510275,China;College of Mathematics & Informatics,South China Agricultural University,Guangzhou 510642,China)
出处 《计算机应用研究》 CSCD 北大核心 2019年第1期250-253,共4页 Application Research of Computers
基金 国家自然科学基金资助项目(61702119) 广东省教育厅青年创新人才项目(自科)(2015KQNCX084) 广州市科技计划资助项目(201804010236 201607010152) 广东省省级科技计划资助项目(2016A010101029)
关键词 隐私保护 差分隐私 隐私参数 隐私泄露 privacy-preserving differential privacy privacy parameter privacy breaches
  • 相关文献

参考文献2

二级参考文献84

  • 1Sweeney L. Kvanonymity , A model for protecting privacy [J]. International Journal of Uncertainty Fuzziness and Knowledge Based Systems. 2002. 10(5): 557-570.
  • 2Machanava//hala A. Kifer D. Gehrke J, et al. Lediversity , Privacy beyond k-anonymity [J]. ACM Trans on Knowledge Discovery from Data (TKDD). 2007. 1(1): 1-3.
  • 3Fung B C M. Wang K. Chen R. et al. Privacy preserving data publishing: A survey of recent developments [J]. Computing. 2010. 5(4): 1-53.
  • 4Hong Y. Vaidya J. Lu H. et al. Differentially private search log sanitization with optimal output utility [C] //Proc of the 15th Int Conf on Extending Database Technology. New York: ACM. 2012: 50-61.
  • 5He Y. Naughton J F. Anonymization of set-valued data via top-down. local generalization [J]. Proceedings of the VLDB Endowment. 2009, 20): 934-945.
  • 6Xu Y. Wang K, Fu A W C. et al. Anonymizing transaction databases for publication [C] //Proc of the 14th Int Conf on Knowledge Discovery and Data Mining. New York: ACM. 2008: 767-775.
  • 7Ghinita G, Kalnis P. Tao Y. Anonymous publication of sensitive transactional data [J]. IEEE Trans on Knowledge and Data Engineering(TKDE). 2011, 23(2): 161-174.
  • 8Loukides G, Gkoulalas D A. Malin B. COAT: Constraintbased anonymization of transactions [J]. Knowledge and Information Systems. 2011. 28(2): 251-282.
  • 9Terrovitis M. Mamoulis N. Kalnis P. Local and global recoding methods for anonymizing set-valued data [J]. The VLDB Journal, 2011. 200): 83-106.
  • 10Terrovi tis M. Mamoulis N. Kalnis P. Privacy-preserving anonymization of set-valued data [J]. Proceedings of the VLDB Endowment. 2008. 1(1): 115-125.

共引文献16

同被引文献11

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部