期刊文献+

基于改进弦截法的FastICA算法研究 被引量:2

Research on FastICA algorithm based on improved secant method
下载PDF
导出
摘要 针对FastICA算法的收敛性易受初始解混矩阵的初值选择影响,引入梯度下降法降低初值选择敏感性,并且提出改进弦截法,加快收敛速度。实验结果显示,基于改进弦截法的FastICA算法与其他FastICA算法相比,不但提高了算法的分离性能,而且减少了迭代次数,增强了收敛稳定性。所以,改进的FastICA算法克服了初值选择敏感的影响,获得更快速、更鲁棒的语音分离性能。 Aiming at the convergence performance of FastICA is easy to affected by initial value selection of the initial demixing matrix,this paper introduced the gradient descent method to reduce initial value sensitivity,and put forward the improved secant method to accelerate the convergence speed. The experimental results show that the improved algorithm compared with other FastICA algorithm,not only improves the separation performance,but also reduces the number of iterations and enhances the convergence stability. Therefore,the improved algorithm overcomes the sensitive influence of initial value selection,and achieves faster and more robust speech separation performance.
作者 张启坤 刘宏哲 袁家政 龚灵杰 Zhang Qikun;Liu Hongzhe;Yuan Jiazheng;Gong Lingjie(Beijing Key Laboratory of Information Service Engineering,Beijing Union University,Beijing 100101,China;Beijing Open University,Beijing 100081,China)
出处 《计算机应用研究》 CSCD 北大核心 2019年第2期425-429,共5页 Application Research of Computers
基金 国家自然科学基金资助项目(61372148 61571045) 国家自然科学基金重大研究计划资助项目(91420202) 北京成像技术高精尖创新中心项目(BAICIT-2016002) 北京市自然科学基金资助项目(4152016)
关键词 盲源分离 固定点算法 梯度下降法 改进弦截法 语音分离 BSS FastICA gradient descent improved secant method speech separation
  • 相关文献

参考文献2

二级参考文献20

  • 1王小敏,曾生根,夏德深.基于松弛因子改进FastICA算法的遥感图像分类方法[J].计算机研究与发展,2006,43(4):708-715. 被引量:7
  • 2谢德光,张贤达,李细林,朱峰.基于独立分量分析的雷达目标识别方法[J].系统工程与电子技术,2007,29(2):164-166. 被引量:8
  • 3Hyvarinen A, Karhunen J, Oja E. Independent component analysis [M]. New York, USA: Wiley Interscience, 2001.
  • 4Eriksson J, Koivunen V. Complex random vectors and ICA models: identifiability, uniqueness, and separability [J]. IEEE Trans. on Information Theory (S0018-9448), 2006, 52(3 ): 1017-1029.
  • 5H Li, M Correa. Application of Independent component analysis with adaptive density model to complex-valued FMRI data [J]. IEEE Trans-actions on Biomedical Engineering (S0018-9294), 2011, 58(10): 2794-2803.
  • 6H Shen, M Kleinsteuber. Complex blind source separation via simultaneous strong uncorrelating transform [C]// Proceedings of The 9th International Conference on Latent Variable Analysis and Signal Separation (LVA/ICA'10), Berlin Heidelberg, Germany. 2010: 287-294.
  • 7Von Hoff T P, Lindgren A G, Kaelin A N. Step-size control in blind sourcec separation [C]// Proceedings of ICABSS'2000, Finland : Helsinki,. 2000:509-513.
  • 8Ji Ce, Yu Yang, Yu Peng. A new FastlCA algorithm of Newton' iteration [C]// The 2010 International Conference on Education Technology and Computer, .Shanghai, China, 2010:481-484.
  • 9Ji Ce, Yu Yang, Yu Peng. Improved algorithm for independent component analysi [C]// Processing of the 2010 International Conference on Future Computer and Communication, Shanghai China. 2010, 2: 467-470.
  • 10Binghamt E, Hyvarinen A. A fast fixed-point algorithm for independent component analysis of complex-valued signals [J]. International Journal of Neural Systems (S1793-6462), 2000, 10(1): 1-8.

共引文献7

同被引文献20

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部