期刊文献+

一种水下群机器人路径规划算法的形式化研究 被引量:3

Formal research for path planning of underwater swarm robots
下载PDF
导出
摘要 为了增强基于遗传算法的水下群机器人路径规划算法正确性的说服力,使用定理证明对其进行形式化研究,给出算法在定理证明器HOL4中的形式化模型。基于算法形式化的一般步骤,对算法的设计进行了详细的分析,指出算法设计的核心步骤和建模难点。在此基础上建立了总体形式化建模框架,然后对其进行化简,得到种群初始化、选择、交叉三个核心模块。给出了模型中要用到的基本数据类型的形式化描述,并分别对三个模块进行形式化描述,最终得到算法的形式化模型。通过证明与模型相关的97条性质,说明了模型的合理性及有效性,在此模型的基础上,可以完成对算法的形式化验证,同时还能拓展HOL4的应用范围。 To enhance the correctness of the path planning of underwater swarm robots based genetic algorithm,this paper used theorem proving to formalize it,and gave the formal model of it in HOL4. According to the general steps of algorithm formalization,this paper analyzed the design procedure of the algorithm in detail firstly. It pointed out the key step of the algorithm and the difficulty in formal modeling,and constructed the overall frame of formal modeling. Then,it got three core modules of population initializing,selection and crossing by decomposing the algorithm. Finally,it formalized the three core modules separately after formalized the basic data types,which would be used in formal model,and got the formal model of the algorithm. By proving the 97 properties related to this model,this paper illustrates the rationality and effectiveness. Moreover,it carried out the formal verification of the algorithm,and also extended the application scope of HOL4.
作者 张杰 刘耕阳 关永 Zhang Jie;Liu Gengyang;Guan Yong(College of Information Science & Technology,Beijing University of Chemical Technology,Beijing 100029,China;College of Information Engineering,Capital Normal University,Beijing 100048,China)
出处 《计算机应用研究》 CSCD 北大核心 2019年第2期490-494,共5页 Application Research of Computers
基金 国家自然科学基金资助项目(61572331)
关键词 遗传算法 群机器人 路径规划 定理证明 形式化建模 HOL4 genetic algorithm swarm robots path planning theorem proving formal modeling HOL4
  • 相关文献

参考文献3

二级参考文献16

  • 1De Berg M,Van Kreveld M,Overmars M,et al. Computational ge- ometry [ M ]. Springer,2000.
  • 2Shi Z P, Gu W Q, Li X J, et al. The gauge integral theory in HOL4 [ J]. Journal of Appled Mathematics,2013,2013 ( 160875 ).
  • 3Meikle L,Fleuriot J. Mechanical theorem proving in computational geometry[M]. Automated Deduction in Geometry,2006:l-18.
  • 4Tiiubig H, Frese U, Hertzberg C, et al. Guaranteeing functional safe- ty : design for provability and computer-aided verification [ J ]. Au- tonomous Robots ,2012,32(3 ) :303-331.
  • 5Hui K, Hehua Z, Xiaoyu S, et al. Proving computational geometry algorithms in TLA + 2 [ C ]. Xi'an, Shaanxi: IEEE,2011.
  • 6Gilbert E G,Johnson D W,Keerthi S S. A fast procedure for computing the distance between complex objects in three-dimensional space[ J ]. Robotics and Automation,IEEE Journal of,1988,4(2) :193-203.
  • 7Zhu Xiang-yang, Ding Han, Zhong Bing-lin, et al. Distance func- tions and their application between general convex objects[ J]. Chi- nese Science Bulletin ,2003,48 (10) :996-1004.
  • 8Cambridge Research Center of SRI International. The HOL system description (For HOL Kananaskis-9 ) [ EB/OL]. http://source- forge, net/projeets/hol/files/hoL/kananaskis-9/kanankananO-de- scription, pdf,2014.
  • 9Hoare C A R. Viewpoint retrospective:an axiomatic basis for com- puter programming [ J ]. Communications of the ACM, 2009,52 (10) :30-32.
  • 10Hoare C A R. An axiomatic basis for computer programming [ J ]. Communications of the ACM,1969,12(10) :576-580.

共引文献19

同被引文献37

引证文献3

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部