期刊文献+

基于序列极值点分段的空中签名身份认证 被引量:2

In-air signature authentication based on sequence extreme point segmentation
下载PDF
导出
摘要 空中签名序列长,为了解决传统的全局匹配方法造成的匹配慢、签名的局部信息丢失的问题,提出了对签名数据进行极值点分段再进行距离度量的方法。并针对传统DTW算法在极值点匹配中产生的不同极性极值点错匹配问题,提出了一种基于极值点匹配的改进DTW算法,约束DTW算法的匹配路径规则,避免错误匹配情况。在本地数据库上,系统的误拒率(FRR)和误纳率(FAR)分别达到了4. 15%和3. 82%。实验结果表明,与传统的全局匹配算法相比,先分段再进行相似度度量的方法使系统的认证精度和效率得到了提高。 The sequence of the in-air signature is long,in order to make the signature match faster and take advantage of more local information,this paper proposed a method that used the extreme points to segment the signature data and then measured the distance. Aiming at the mismatch problem of different polarity extreme point in traditional DTW algorithm,this paper proposed an improved DTW algorithm based on extreme point matching,which constrained the matching path of DTW algorithm and avoided error matching between extreme points. It achieved the result FRR: 4. 15% and FAR: 3. 82% on the local database. Experimental results show that,compared with the traditional global distance measurement method,the method that segment first and then measure the distance improves the accuracy and efficiency of the system.
作者 任妍 汪阳 郑建彬 詹恩奇 Ren Yan;Wang Yang;Zheng Jianbin;Zhan Enqi(College of Information Engineering,Wuhan University of Technology,Wuhan 430070,China;Key Laboratory of Fiber Optic Sensing Technology & Information Processing of Ministry of Education,Wuhan 430070,China)
出处 《计算机应用研究》 CSCD 北大核心 2019年第2期511-514,共4页 Application Research of Computers
基金 国家自然科学基金资助项目(61303028)
关键词 身份认证 加速度计 极值点匹配 数据分段 序列对齐 identity verification accelerometer extreme point matching data segmentation sequence alignment
  • 相关文献

参考文献3

二级参考文献35

  • 1叶波,文玉梅.基于小波变换和支持向量机的步态识别算法[J].中国图象图形学报,2007,12(6):1055-1063. 被引量:8
  • 2Turaga P,Chellappa R,Subrahmanian V S,et sl.Machine recognition of human activities:A survey[J].IEEE Transactions on Circuits and Systems for Video Technology,2008,18(11):1473-1488.
  • 3Murray M,Drought A,Kory R.Walking pattern of normal men[J].Journal of Bone and Joint Surgery,1964,46-A(2):335-360.
  • 4Meeslund T B,Granum E.A survey of computer vision-based human motion capture[J].Computer Vision and Image Understanding,2001,81(3):231-268.
  • 5Sarkar S,Phillips P,Liu Z,et al.The human ID gait challenge problem:Data sets,performance and analysis[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,27(2):162-177.
  • 6Boyd J E.Synchronization of oscillations for machine perception of gaits[J].Computer Vision and Image Understanding,2004,96(1):35-59.
  • 7Haritaoglu I,Cutler R,Harwood D,et al.Backpack:Detection of people carrying objects using silhouettes[J].Computer Vision and Image Understanding,2001,6(3):385-397.
  • 8Han J,Bhanu B.Statistical feature fusion for gait-based human recognition[C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition.Washington,DC,USA:Institute of Electrical and Electronics Engineers Inc.,2004:842-847.
  • 9Kale A,Sundaresan A,Rajagopalan A N,et al.Identification of humans using gait[J].IEEE Transactions on Image Processing,2004,13(9):1163-1173.
  • 10Liu z,Sarkar S.Simplest representation yet for gait recognition:Averaged silhouette[C]//Proceedings of International Conference on Pattern Recognition.Washington,DC,USA:Institute of Electrical and Electronics Engineers lnc.,2004:211-214.

共引文献81

同被引文献16

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部