期刊文献+

面向数据流的多任务多核在线学习算法 被引量:2

Online learning algorithm based on multi-task and multi-kernel for stream data
下载PDF
导出
摘要 对于数据流的处理,现有的在线学习算法在准确性上仍有欠缺,故提出一种新的多任务多核在线学习模型用于提高数据流预测的准确性。在保持多任务多核学习的基础上,将其扩展到在线学习中,从而得到一个新的在线学习算法;同时为输入数据保持一定大小的数据窗口,用较小空间换取数据的完整性。实验部分对核函数的选取以及训练样本集的大小进行了较为详细的分析,通过对UCI数据和实际的机场客流量数据进行分析,很好地保障了流数据处理的准确性及实时性,有一定的实际应用价值。 For the prediction of data stream,some online learning algorithms have some shortcomings in accuracy.Therefore,this paper proposed a new multi-task and multi-kernel online learning model to improve the accuracy of data stream prediction.Based on the multi-task multiple-kernel learning,it extended the model to online learning,so as to get a new online learning algorithm,while maintaining a certain size of the input data window for the integrity of the data with less space.In the experimental part,it analyzed the selection of kernel function and the size of training sample set in detail.Through the analysis of UCI data and actual airport passenger flow data,the proposed algorithm can ensure the accuracy and real-time of stream data processing,and has certain applicable value.
作者 裴乐 刘群 Pei Le;Liu Qun(Chongqing Key Laboratory of Computational Intelligence,Chongqing University of Posts&Telecommunications,Chongqing 400065,China)
出处 《计算机应用研究》 CSCD 北大核心 2019年第3期668-672,共5页 Application Research of Computers
基金 国家重点研发计划资助项目(2016QY01W0200)
关键词 多任务多核学习 在线学习 流数据 支持向量机 multi-task and multi-kernel learning online learning streaming data SVM
  • 相关文献

参考文献4

二级参考文献100

  • 1GOPALKRISHNAN V, STEIER D, LEWIS H, et al. Big data, big business: bridging the gap [ C ]//Proceedings of the 1st International Workshop on Big Data, Streams and Heterogeneous Source Mining: Algorithms, Systems, Pro- gramming Models and Applications. Beijing, China, 2012: 7-11.
  • 2YANG H, FONG S. Incrementally optimized decision tree for noisy big data[ C]//Proceedings of the 1st International Workshop on Big Data, Streams and Heterogeneous Source Mining: Algorithms, Systems, Programming Models and Applications. Beijing, China, 2012: 36-44.
  • 3JORDAN M I. Divide-and-conquer and statistical inference for big data[ C]//Proceedings of the 18th ACM SIGKDD in- ternational conference on Knowledge discovery and data mining. Beijing, China, 2012: 4-4.
  • 4ACAR U A, CHEN Y. Streaming big data with self-adjus- ting computation [ C ]//Proceedings of the 2013 Proceedings of the 2013 Workshop on Data driven Functional Program- ming. Rome, Italy, 2013: 15-18.
  • 5ARI I, CELEBI O F, OLMEZOGULLARI E. Data stream analytics and mining in the cloud [ C ]//Proceedings of the 2012 IEEE 4th International Conference on Cloud Compu- ting Technology and Science. Washington, DC, USA, 2012: 857-862.
  • 6AGMON S. The relaxation method for linear inequalities[ J ]. Canadian Journal of Mathematics, 1954, 6(3) : 393- 404.
  • 7GONEN M, ALPAYD E. Multiple kernel learning algo- rithms [ J ]. Journal of Machine Learning Research, 2011 (12) : 2211-2268.
  • 8ORABONA F, JIE L, CAPUTO B. Multi kernel learning with online-batch optimization [ J ]. Journal of Machine I/earning Research, 2012( 13): 227-253.
  • 9JIN R, HOI S C H, YANG T, et al. Online multiple kernel learning: algorithms and mistake bounds [ J ]. Algorithmic laming Theory, 2010( 6331 ) : 390-404.
  • 10SINDHWANI V, NIYOGI P, BELKIN M. Beyond the point cloud: from transductive to semi-supervised learning [ C ]//Proceedings of the 22nd International Conference on Machine Learning. Bonn, Germany, 2005: 824-831.

共引文献56

同被引文献18

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部