期刊文献+

风力机叶片气动外形与主机运行特性耦合优化设计 被引量:3

The Coupling Optimization Design of Aerodynamic Shape and Operating Characteristics of Wind Turbine Blades
下载PDF
导出
摘要 在叶片的优化设计中,叶片的气动外形与风力机主机的稳态运行特性存在耦合设计关系,一方面叶片的外形形状决定主机的稳态运行特性;另一方面对不同外形形状的风力机叶片应设计与之相匹配的风轮转速、叶片桨矩角等主机稳态控制策略,进而才能准确的计算和提高叶片在低风速条件下的气动性能。基于高阶贝塞尔曲线和粒子群算法构建了叶片气动外形的优化设计模型,在最大叶根弯矩和风轮推力的约束条件下,以年发电量最大为目标对某1.5MW叶片进行了优化设计。结果表明,提出的优化设计方法可实现风力机叶片气动外形和稳态运行特性的一体化优化设计,提高了风力机在低于额定风速下的气动性能,研究方法可运用于低风速超低风速风力机叶片的设计中。 In the optimization design of the wind turbine blades,there is a coupling relationship between aerodynamic shape and operating characteristics,the aerodynamic performance of a wind turbine blade will have a great increase if the steadystate control strategy is properly designed. For the research,based on the high order Bezier curve theory and particle swarm optimization algorithm(PSO),an optimization design model of wind turbine blade is presented. In the model,the objective function is maximization of annual energy production,which is subjected to the constraints of maximum blade-root moment and hub trust. With the new blade design method,a new blade is optimized,comparisons with the original 1.5 MW wind turbine blade shows that the new blade has better performance for the design of wind turbine blades under the low wind speed conditions,this article shows an integrated optimization design method of the blade aerodynamic shape and wind turbine operating characteristics.
作者 郭小锋 郭士锐 杨树峰 车江宁 GUO Xiao-feng;GUO Shi-rui;YANG Shu-feng;CHE Jiang-ning(School of Mechanical Science&Engineering Zhongyuan University of Technology,He’nan Zhengzhou 450007,China)
出处 《机械设计与制造》 北大核心 2019年第3期204-207,共4页 Machinery Design & Manufacture
基金 国家高技术研究发展计划(863计划 2012AA051301) 河南省高等学校重点科研项目(16A460041)
关键词 风力机叶片 气动外形 稳态运行特性 粒子群算法 优化设计 Wind Turbine Blade Aerodynamic Shape Steady Operating Characteristics PSO Optimization Design
  • 相关文献

参考文献1

二级参考文献17

  • 1刘雄,陈严,叶枝全.水平轴风力机风轮叶片优化设计模型研究[J].汕头大学学报(自然科学版),2006,21(1):44-49. 被引量:26
  • 2LANZAFAME R, MESSINA M. Fluid dynamics wind turbine design: Critical analysis, optimization and application of BEM theory[J]. Renewable Energy, 2007, 32(14): 2291-2305.
  • 3HE C. Development and application of a generalized dynamic wake theory for lifting rotors[D]. Georgia: Georgia Institute of Technology, 1989.
  • 4HARTWANGER D, HORVAT A. 3D modelling of a wind turbine using CFD[C]// NAFEMS UK Conference Cheltenham, United Kingdom, June 10-11, 2008.
  • 5KIM B, KIM W, BAE S, et al. Aerodynamic design and performance analysis of multi-MW class wind turbine blade[J]. Journal of Mechanical Science and Technology, 2011, 25(8): 1995-2002.
  • 6ERNST B, BLOH M, SEUME J R, et al. Implementation of the cuckoo search algorithm to optimize the design ofwind turbine rotor blades[J]. Proceedings of the European Wind Energy Association (EWEA) 2012 Annual Event, Copenhagen, Denmark, 2012.
  • 7GR/FFIN D A. Blade system design studies volume ii: Preliminary blade designs and recommended test matrix[R]: United States: Department of Energy, 2004.
  • 8KONG C, BANG J, SUGIYAMA Y. Structural investigation of composite wind turbine blade considering various load cases and fatigue life[J]. Energy, 2005, 30(11): 2101-2114.
  • 9GRUJICIC M, ARAKERE G, PANDURANGAN B, et al. Multidisciplinary design optimization for glass-fiber epoxy-matrix composite 5 MW horizontal-axis wind-turbine blades[J]. Journal of Materials Engineering and Performance, 2010, 19(8): 1116-1127.
  • 10BAK C, FUGLSANG P, JOHANSEN J, et al,. Wind tunnel tests of the NACA 63-415 and a modified NACA 63-415 airfoil[R]: Denmark: RisO national laboratory, 2000.

共引文献8

同被引文献15

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部